用于蒸发液滴动态可视化的透射干涉条纹 (TIF) 技术

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-09-10 DOI:10.1063/5.0223571
Iltai Isaac Kim, Yang Lie, Hongkyu Yoon, Jeffrey A. Greathouse
{"title":"用于蒸发液滴动态可视化的透射干涉条纹 (TIF) 技术","authors":"Iltai Isaac Kim, Yang Lie, Hongkyu Yoon, Jeffrey A. Greathouse","doi":"10.1063/5.0223571","DOIUrl":null,"url":null,"abstract":"The transmission interference fringe (TIF) technique was developed to visualize the dynamics of evaporating droplets based on the Reflection Interference Fringe (RIF) technique for micro-sized droplets. The geometric formulation was conducted to determine the contact angle (CA) and height of macro-sized droplets without the need for the prism used in RIF. The TIF characteristics were analyzed through experiments and simulations to demonstrate a wider range of contact angles from 0 to 90°, in contrast to RIF's limited range of 0–30°. TIF was utilized to visualize the dynamic evaporation of droplets in the constant contact radius (CCR) mode, observing the droplet profile change from convex-only to convex-concave at the end of dry-out from the interference fringe formation. The TIF also observed the contact angle increase from the fringe radius increase. This observation is uniquely reported as the interference fringe (IF) technique can detect the formation of interference fringe between the reflection from the center convex profile and the reflection from the edge concave profile on the far-field screen. Unlike general microscopy techniques, TIF can detect far-field interference fringes as it focuses beyond the droplet-substrate interface. The formation of the convex-concave profile during CCR evaporation is believed to be influenced by the non-uniform evaporative flux along the droplet surface.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transmission interference fringe (TIF) technique for the dynamic visualization of evaporating droplet\",\"authors\":\"Iltai Isaac Kim, Yang Lie, Hongkyu Yoon, Jeffrey A. Greathouse\",\"doi\":\"10.1063/5.0223571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transmission interference fringe (TIF) technique was developed to visualize the dynamics of evaporating droplets based on the Reflection Interference Fringe (RIF) technique for micro-sized droplets. The geometric formulation was conducted to determine the contact angle (CA) and height of macro-sized droplets without the need for the prism used in RIF. The TIF characteristics were analyzed through experiments and simulations to demonstrate a wider range of contact angles from 0 to 90°, in contrast to RIF's limited range of 0–30°. TIF was utilized to visualize the dynamic evaporation of droplets in the constant contact radius (CCR) mode, observing the droplet profile change from convex-only to convex-concave at the end of dry-out from the interference fringe formation. The TIF also observed the contact angle increase from the fringe radius increase. This observation is uniquely reported as the interference fringe (IF) technique can detect the formation of interference fringe between the reflection from the center convex profile and the reflection from the edge concave profile on the far-field screen. Unlike general microscopy techniques, TIF can detect far-field interference fringes as it focuses beyond the droplet-substrate interface. The formation of the convex-concave profile during CCR evaporation is believed to be influenced by the non-uniform evaporative flux along the droplet surface.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223571\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0223571","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在针对微小液滴的反射干涉条纹(RIF)技术的基础上,开发了透射干涉条纹(TIF)技术,用于可视化蒸发液滴的动态。在不需要 RIF 中使用的棱镜的情况下,通过几何配方确定了大尺寸液滴的接触角(CA)和高度。通过实验和模拟分析了 TIF 的特性,与 RIF 0-30° 的有限范围相比,TIF 的接触角范围更广,从 0 到 90°。在恒定接触半径 (CCR) 模式下,利用 TIF 观察液滴的动态蒸发,可以观察到液滴轮廓在干燥结束时从仅有凸面到形成干涉条纹的凸凹面的变化。TIF 还观察到接触角因边缘半径增大而增大。由于干涉条纹(IF)技术可以检测到远场屏幕上中心凸面轮廓的反射和边缘凹面轮廓的反射之间形成的干涉条纹,因此这一观察结果是独一无二的。与一般显微镜技术不同,TIF 可以检测远场干涉条纹,因为它的聚焦范围超出了液滴-基底界面。在 CCR 蒸发过程中形成的凸凹轮廓被认为是受到沿液滴表面的非均匀蒸发通量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transmission interference fringe (TIF) technique for the dynamic visualization of evaporating droplet
The transmission interference fringe (TIF) technique was developed to visualize the dynamics of evaporating droplets based on the Reflection Interference Fringe (RIF) technique for micro-sized droplets. The geometric formulation was conducted to determine the contact angle (CA) and height of macro-sized droplets without the need for the prism used in RIF. The TIF characteristics were analyzed through experiments and simulations to demonstrate a wider range of contact angles from 0 to 90°, in contrast to RIF's limited range of 0–30°. TIF was utilized to visualize the dynamic evaporation of droplets in the constant contact radius (CCR) mode, observing the droplet profile change from convex-only to convex-concave at the end of dry-out from the interference fringe formation. The TIF also observed the contact angle increase from the fringe radius increase. This observation is uniquely reported as the interference fringe (IF) technique can detect the formation of interference fringe between the reflection from the center convex profile and the reflection from the edge concave profile on the far-field screen. Unlike general microscopy techniques, TIF can detect far-field interference fringes as it focuses beyond the droplet-substrate interface. The formation of the convex-concave profile during CCR evaporation is believed to be influenced by the non-uniform evaporative flux along the droplet surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Magnetic heating of interacting nanoparticles under different driving field waveforms Impact of Al profile in high-Al content AlGaN/GaN HEMTs on the 2DEG properties Statistical features of the response of a superconducting hot-electron bolometer to extremely weak terahertz pulses of picosecond and nanosecond duration 300-nm-thick, ultralow-loss silicon nitride photonic integrated circuits by 8-in. foundry production ScAlInN/GaN heterostructures grown by molecular beam epitaxy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1