与用于声能传输的电容式微型机械超声换能器 (CMUT) 相适应的有源和无源电子接口

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Sensors and Actuators A-physical Pub Date : 2024-09-02 DOI:10.1016/j.sna.2024.115856
{"title":"与用于声能传输的电容式微型机械超声换能器 (CMUT) 相适应的有源和无源电子接口","authors":"","doi":"10.1016/j.sna.2024.115856","DOIUrl":null,"url":null,"abstract":"<div><p>Wireless power transfer is a key feature in the field of biomedical engineering. It allows a reduction of the energy storage devices in medical implants. An efficient way to safely transfer energy to medical implants is to convey ultrasounds through the body to a Capacitive Micromachined Ultrasonic Transducer (CMUT). For an application of ultrasonic energy transfer through skin, the present work compares the efficiency of two different electronic architectures to receive energy from an array of CMUT. The well known Synchronous Switch Harvesting on Inductor (SSHI) is compared in simulation to a simple impedance matching. Indeed, for an ultrasonic energy transfer, the high excitation frequency (1–8 MHz) allows the use of an inductor matching the CMUT’s clamped capacitor. The simplicity of an impedance matching circuit, its low volume and its efficiency makes it the best choice for an efficient energy transfer process to the targeted load. The CMUT model used in the simulations is a mason’s model which component values are extracted from the impedance measurement of a real device. In the end, the impedance matching is experimentally tested on this same device and compared to the simulation. A maximum 4,5 mW power is transferred to an optimal load for an input ultrasound pressure of 90 kPa.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924424724008501/pdfft?md5=6522979ccffaf63cdd3792e8b8d14a84&pid=1-s2.0-S0924424724008501-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Active and passive electronic interfaces adapted to a capacitive micromachined ultrasonic transducer (CMUT) used in acoustic energy transfer\",\"authors\":\"\",\"doi\":\"10.1016/j.sna.2024.115856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wireless power transfer is a key feature in the field of biomedical engineering. It allows a reduction of the energy storage devices in medical implants. An efficient way to safely transfer energy to medical implants is to convey ultrasounds through the body to a Capacitive Micromachined Ultrasonic Transducer (CMUT). For an application of ultrasonic energy transfer through skin, the present work compares the efficiency of two different electronic architectures to receive energy from an array of CMUT. The well known Synchronous Switch Harvesting on Inductor (SSHI) is compared in simulation to a simple impedance matching. Indeed, for an ultrasonic energy transfer, the high excitation frequency (1–8 MHz) allows the use of an inductor matching the CMUT’s clamped capacitor. The simplicity of an impedance matching circuit, its low volume and its efficiency makes it the best choice for an efficient energy transfer process to the targeted load. The CMUT model used in the simulations is a mason’s model which component values are extracted from the impedance measurement of a real device. In the end, the impedance matching is experimentally tested on this same device and compared to the simulation. A maximum 4,5 mW power is transferred to an optimal load for an input ultrasound pressure of 90 kPa.</p></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0924424724008501/pdfft?md5=6522979ccffaf63cdd3792e8b8d14a84&pid=1-s2.0-S0924424724008501-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724008501\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008501","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无线电力传输是生物医学工程领域的一个重要特征。它可以减少医疗植入物中的能量储存装置。将超声波通过人体传输到电容式微机械超声换能器(CMUT)是将能量安全传输到医疗植入物的有效方法。针对通过皮肤传输超声波能量的应用,本研究比较了两种不同电子架构从 CMUT 阵列接收能量的效率。在模拟中,将众所周知的电感同步开关采集(SSHI)与简单的阻抗匹配进行了比较。事实上,对于超声波能量转移,高激励频率(1-8 MHz)允许使用与 CMUT 的箝位电容器相匹配的电感器。阻抗匹配电路简单、体积小、效率高,是向目标负载高效传输能量的最佳选择。模拟中使用的 CMUT 模型是一个梅森模型,其元件值是从实际设备的阻抗测量值中提取的。最后,在同一设备上对阻抗匹配进行实验测试,并与模拟结果进行比较。在输入 90 kPa 超声波压力的情况下,最大功率为 4.5 mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active and passive electronic interfaces adapted to a capacitive micromachined ultrasonic transducer (CMUT) used in acoustic energy transfer

Wireless power transfer is a key feature in the field of biomedical engineering. It allows a reduction of the energy storage devices in medical implants. An efficient way to safely transfer energy to medical implants is to convey ultrasounds through the body to a Capacitive Micromachined Ultrasonic Transducer (CMUT). For an application of ultrasonic energy transfer through skin, the present work compares the efficiency of two different electronic architectures to receive energy from an array of CMUT. The well known Synchronous Switch Harvesting on Inductor (SSHI) is compared in simulation to a simple impedance matching. Indeed, for an ultrasonic energy transfer, the high excitation frequency (1–8 MHz) allows the use of an inductor matching the CMUT’s clamped capacitor. The simplicity of an impedance matching circuit, its low volume and its efficiency makes it the best choice for an efficient energy transfer process to the targeted load. The CMUT model used in the simulations is a mason’s model which component values are extracted from the impedance measurement of a real device. In the end, the impedance matching is experimentally tested on this same device and compared to the simulation. A maximum 4,5 mW power is transferred to an optimal load for an input ultrasound pressure of 90 kPa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
期刊最新文献
High-selectivity NIR amorphous silicon-based plasmonic photodetector at room temperature 2D beam steering using phased array of MEMS tunable grating couplers Focus-switchable piezoelectric actuator: A bionic thin-plate design inspired by conch structure Methods of fabrication and modeling of CMUTs – A review Effect of material anisotropy on the first-order vibration of piezoelectric oscillators in circular plate configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1