YAG:Dy 与 Tb 共掺,用于从室温到 1600 °C 的基于寿命的荧光粉温度测定法

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Sensors and Actuators A-physical Pub Date : 2024-09-08 DOI:10.1016/j.sna.2024.115890
{"title":"YAG:Dy 与 Tb 共掺,用于从室温到 1600 °C 的基于寿命的荧光粉温度测定法","authors":"","doi":"10.1016/j.sna.2024.115890","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphor thermometry has demonstrated significant potential for nondestructive high-temperature measurements in gas turbines. To expand the measurement range through lifetime-based phosphor thermometry, we developed a novel phosphor, YAG:Dy co-doped with Tb (YAG:Dy,Tb). Three YAG:Dy,Tb samples with varying Tb concentrations were synthesized through the sol–gel method. A fiber-optic-coupled measurement system was established to capture multiple emission peaks of YAG co-doped with Dy<sup>3+</sup> and Tb<sup>3+</sup> at 544 nm, 484 nm, and 458 nm. Efficient energy transfer from Dy<sup>3+</sup> to Tb<sup>3+</sup> resulted in a substantial enhancement of Tb<sup>3+</sup> emission at 544 nm under 355 nm excitation. Owing to the energy transfer, the temperature measurement range under the lifetime method was extended from room temperature to 1600 °C using the combination of Tb<sup>3+</sup> emission at 544 nm and Dy<sup>3+</sup> emission at 458 nm. YAG:Dy,Tb samples with higher concentrations of Tb<sup>3+</sup> exhibited superior temperature measurement performance, mainly owing to their stronger signal-to-noise ratio at &gt;1000 °C. The performances of different emission peaks were also compared according to temperature uncertainty, which generally ranged from 0.1 °C to 2.7 °C across the entire measurement range.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YAG:Dy co-doped with Tb for lifetime-based phosphor thermometry from room temperature to 1600 °C\",\"authors\":\"\",\"doi\":\"10.1016/j.sna.2024.115890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phosphor thermometry has demonstrated significant potential for nondestructive high-temperature measurements in gas turbines. To expand the measurement range through lifetime-based phosphor thermometry, we developed a novel phosphor, YAG:Dy co-doped with Tb (YAG:Dy,Tb). Three YAG:Dy,Tb samples with varying Tb concentrations were synthesized through the sol–gel method. A fiber-optic-coupled measurement system was established to capture multiple emission peaks of YAG co-doped with Dy<sup>3+</sup> and Tb<sup>3+</sup> at 544 nm, 484 nm, and 458 nm. Efficient energy transfer from Dy<sup>3+</sup> to Tb<sup>3+</sup> resulted in a substantial enhancement of Tb<sup>3+</sup> emission at 544 nm under 355 nm excitation. Owing to the energy transfer, the temperature measurement range under the lifetime method was extended from room temperature to 1600 °C using the combination of Tb<sup>3+</sup> emission at 544 nm and Dy<sup>3+</sup> emission at 458 nm. YAG:Dy,Tb samples with higher concentrations of Tb<sup>3+</sup> exhibited superior temperature measurement performance, mainly owing to their stronger signal-to-noise ratio at &gt;1000 °C. The performances of different emission peaks were also compared according to temperature uncertainty, which generally ranged from 0.1 °C to 2.7 °C across the entire measurement range.</p></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724008847\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008847","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

荧光粉测温法在燃气轮机的无损高温测量方面具有巨大潜力。为了通过基于寿命的荧光粉测温法扩大测量范围,我们开发了一种新型荧光粉--掺杂铽元素的 YAG:Dy (YAG:Dy,Tb)。我们通过溶胶-凝胶法合成了三种不同铽浓度的 YAG:Dy,Tb 样品。建立的光纤耦合测量系统可捕捉到掺杂了 Dy3+ 和 Tb3+ 的 YAG 在 544 nm、484 nm 和 458 nm 处的多个发射峰。在 355 nm 激发下,Dy3+ 向 Tb3+ 的有效能量转移导致 Tb3+ 在 544 nm 处的发射大大增强。由于能量转移,利用 544 nm 处的 Tb3+ 发射和 458 nm 处的 Dy3+ 发射组合,寿命法的温度测量范围从室温扩展到 1600 °C。Tb3+ 浓度较高的 YAG:Dy,Tb 样品表现出更优越的温度测量性能,这主要归功于其在 1000 °C 时更高的信噪比。我们还根据温度不确定性对不同发射峰的性能进行了比较,在整个测量范围内,温度不确定性一般在 0.1 ℃ 至 2.7 ℃ 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YAG:Dy co-doped with Tb for lifetime-based phosphor thermometry from room temperature to 1600 °C

Phosphor thermometry has demonstrated significant potential for nondestructive high-temperature measurements in gas turbines. To expand the measurement range through lifetime-based phosphor thermometry, we developed a novel phosphor, YAG:Dy co-doped with Tb (YAG:Dy,Tb). Three YAG:Dy,Tb samples with varying Tb concentrations were synthesized through the sol–gel method. A fiber-optic-coupled measurement system was established to capture multiple emission peaks of YAG co-doped with Dy3+ and Tb3+ at 544 nm, 484 nm, and 458 nm. Efficient energy transfer from Dy3+ to Tb3+ resulted in a substantial enhancement of Tb3+ emission at 544 nm under 355 nm excitation. Owing to the energy transfer, the temperature measurement range under the lifetime method was extended from room temperature to 1600 °C using the combination of Tb3+ emission at 544 nm and Dy3+ emission at 458 nm. YAG:Dy,Tb samples with higher concentrations of Tb3+ exhibited superior temperature measurement performance, mainly owing to their stronger signal-to-noise ratio at >1000 °C. The performances of different emission peaks were also compared according to temperature uncertainty, which generally ranged from 0.1 °C to 2.7 °C across the entire measurement range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
期刊最新文献
High-selectivity NIR amorphous silicon-based plasmonic photodetector at room temperature 2D beam steering using phased array of MEMS tunable grating couplers Focus-switchable piezoelectric actuator: A bionic thin-plate design inspired by conch structure Methods of fabrication and modeling of CMUTs – A review Effect of material anisotropy on the first-order vibration of piezoelectric oscillators in circular plate configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1