米替福新通过改变 PI3K/AKT 信号通路诱导精子获能过程中的生殖毒性

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-10 DOI:10.1016/j.etap.2024.104565
Eun-Ju Jung , Woo-Jin Lee , Jeong-Won Bae , Woo-Sung Kwon
{"title":"米替福新通过改变 PI3K/AKT 信号通路诱导精子获能过程中的生殖毒性","authors":"Eun-Ju Jung ,&nbsp;Woo-Jin Lee ,&nbsp;Jeong-Won Bae ,&nbsp;Woo-Sung Kwon","doi":"10.1016/j.etap.2024.104565","DOIUrl":null,"url":null,"abstract":"<div><p>Miltefosine is the first and only drug approved for the treatment of leishmaniasis. It is also known as a PI3K/AKT signaling pathway inhibitor utilized in anti-cancer or anti-viral therapies. However, the impact of miltefosine on male fertility has not been fully understood. Therefore, this study was performed to investigate the effects of miltefosine on sperm function during capacitation. Duroc spermatozoa were exposed to 0, 2.5, 5, 10, 20, 40, and 80 μM miltefosine and induced for capacitation. Our results showed that miltefosine dramatically increased the expression of PI3K/AKT signaling pathway-associated proteins. Sperm motility, motion kinetics, capacitation, and tyrosine phosphorylation were significantly suppressed by miltefosine. However, intracellular ATP levels and cell viability were not significantly affected. Our findings suggest that miltefosine may disrupt sperm function by abnormally increasing the levels of PI3K/AKT signaling pathway-associated proteins. Therefore, the harmful effects of miltefosine on male reproduction should be considered when using this drug.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miltefosine induces reproductive toxicity during sperm capacitation by altering PI3K/AKT signaling pathway\",\"authors\":\"Eun-Ju Jung ,&nbsp;Woo-Jin Lee ,&nbsp;Jeong-Won Bae ,&nbsp;Woo-Sung Kwon\",\"doi\":\"10.1016/j.etap.2024.104565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Miltefosine is the first and only drug approved for the treatment of leishmaniasis. It is also known as a PI3K/AKT signaling pathway inhibitor utilized in anti-cancer or anti-viral therapies. However, the impact of miltefosine on male fertility has not been fully understood. Therefore, this study was performed to investigate the effects of miltefosine on sperm function during capacitation. Duroc spermatozoa were exposed to 0, 2.5, 5, 10, 20, 40, and 80 μM miltefosine and induced for capacitation. Our results showed that miltefosine dramatically increased the expression of PI3K/AKT signaling pathway-associated proteins. Sperm motility, motion kinetics, capacitation, and tyrosine phosphorylation were significantly suppressed by miltefosine. However, intracellular ATP levels and cell viability were not significantly affected. Our findings suggest that miltefosine may disrupt sperm function by abnormally increasing the levels of PI3K/AKT signaling pathway-associated proteins. Therefore, the harmful effects of miltefosine on male reproduction should be considered when using this drug.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1382668924002059\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924002059","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

米替福新是第一个也是唯一一个获准用于治疗利什曼病的药物。它也被称为 PI3K/AKT 信号通路抑制剂,可用于抗癌或抗病毒疗法。然而,米替福新对男性生育能力的影响尚未完全明了。因此,本研究调查了米替福新在获能过程中对精子功能的影响。将杜洛克精子暴露于 0、2.5、5、10、20、40 和 80 μM 的米替福新并诱导其获能。结果表明,米替福新能显著增加 PI3K/AKT 信号通路相关蛋白的表达。米替福新显著抑制了精子的运动、运动动力学、获能和酪氨酸磷酸化。然而,细胞内 ATP 水平和细胞活力并未受到明显影响。我们的研究结果表明,米替福新可能会通过异常增加 PI3K/AKT 信号通路相关蛋白的水平来破坏精子功能。因此,在使用这种药物时应考虑到米替福新对男性生殖的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Miltefosine induces reproductive toxicity during sperm capacitation by altering PI3K/AKT signaling pathway

Miltefosine is the first and only drug approved for the treatment of leishmaniasis. It is also known as a PI3K/AKT signaling pathway inhibitor utilized in anti-cancer or anti-viral therapies. However, the impact of miltefosine on male fertility has not been fully understood. Therefore, this study was performed to investigate the effects of miltefosine on sperm function during capacitation. Duroc spermatozoa were exposed to 0, 2.5, 5, 10, 20, 40, and 80 μM miltefosine and induced for capacitation. Our results showed that miltefosine dramatically increased the expression of PI3K/AKT signaling pathway-associated proteins. Sperm motility, motion kinetics, capacitation, and tyrosine phosphorylation were significantly suppressed by miltefosine. However, intracellular ATP levels and cell viability were not significantly affected. Our findings suggest that miltefosine may disrupt sperm function by abnormally increasing the levels of PI3K/AKT signaling pathway-associated proteins. Therefore, the harmful effects of miltefosine on male reproduction should be considered when using this drug.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. Wilms' tumor 1 -targeting cancer vaccine: Recent advancements and future perspectives. Toll-like receptor agonists as cancer vaccine adjuvants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1