Xiaoyang Liu , Kangqi Zhang , Xiaoqin Zhang , Giacomo Fiumara , Pasquale De Meo
{"title":"一种混合改进型压缩粒子群优化 WSN 节点定位算法","authors":"Xiaoyang Liu , Kangqi Zhang , Xiaoqin Zhang , Giacomo Fiumara , Pasquale De Meo","doi":"10.1016/j.phycom.2024.102490","DOIUrl":null,"url":null,"abstract":"<div><p>The improvement of positioning accuracy in Wireless Sensor Networks (hereafter, WSN) is crucial to develop advanced Internet of Things (IOT, for short) applications. However, the conventional distance vector-hop (DV-Hop) localization algorithm has shortcomings such as low accuracy and weak stability. To overcome these shortcomings, this paper proposes a hybrid improved compressed particle swarm optimization algorithm (HICPSO), which consists of a scheme of linearly decreasing inertia weights, compressed velocity vectors, population Gaussian variants and optimal boundary selection. Then, HICPSO is integrated with DV-Hop to gradually reduce the distance error of least squares method (LSM) estimated with the efficient search advantage of HICPSO. Our simulation results show that the HICPSO algorithm possesses better computational accuracy and search performance on the 22 benchmark test functions compared with the algorithms such as the Improved Adaptive Genetic Algorithm (IAGA) and Adaptive Weighted Particle Swarm Optimizer (AWPSO). Meanwhile, compared with IAGA and AWPSO, the positioning accuracy of HICPSO-based positioning algorithm is improved by 4.28% and 4.76% respectively, and the stability is improved by one order of magnitude.</p></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"67 ","pages":"Article 102490"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid improved compressed particle swarm optimization WSN node location algorithm\",\"authors\":\"Xiaoyang Liu , Kangqi Zhang , Xiaoqin Zhang , Giacomo Fiumara , Pasquale De Meo\",\"doi\":\"10.1016/j.phycom.2024.102490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The improvement of positioning accuracy in Wireless Sensor Networks (hereafter, WSN) is crucial to develop advanced Internet of Things (IOT, for short) applications. However, the conventional distance vector-hop (DV-Hop) localization algorithm has shortcomings such as low accuracy and weak stability. To overcome these shortcomings, this paper proposes a hybrid improved compressed particle swarm optimization algorithm (HICPSO), which consists of a scheme of linearly decreasing inertia weights, compressed velocity vectors, population Gaussian variants and optimal boundary selection. Then, HICPSO is integrated with DV-Hop to gradually reduce the distance error of least squares method (LSM) estimated with the efficient search advantage of HICPSO. Our simulation results show that the HICPSO algorithm possesses better computational accuracy and search performance on the 22 benchmark test functions compared with the algorithms such as the Improved Adaptive Genetic Algorithm (IAGA) and Adaptive Weighted Particle Swarm Optimizer (AWPSO). Meanwhile, compared with IAGA and AWPSO, the positioning accuracy of HICPSO-based positioning algorithm is improved by 4.28% and 4.76% respectively, and the stability is improved by one order of magnitude.</p></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"67 \",\"pages\":\"Article 102490\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490724002088\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002088","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The improvement of positioning accuracy in Wireless Sensor Networks (hereafter, WSN) is crucial to develop advanced Internet of Things (IOT, for short) applications. However, the conventional distance vector-hop (DV-Hop) localization algorithm has shortcomings such as low accuracy and weak stability. To overcome these shortcomings, this paper proposes a hybrid improved compressed particle swarm optimization algorithm (HICPSO), which consists of a scheme of linearly decreasing inertia weights, compressed velocity vectors, population Gaussian variants and optimal boundary selection. Then, HICPSO is integrated with DV-Hop to gradually reduce the distance error of least squares method (LSM) estimated with the efficient search advantage of HICPSO. Our simulation results show that the HICPSO algorithm possesses better computational accuracy and search performance on the 22 benchmark test functions compared with the algorithms such as the Improved Adaptive Genetic Algorithm (IAGA) and Adaptive Weighted Particle Swarm Optimizer (AWPSO). Meanwhile, compared with IAGA and AWPSO, the positioning accuracy of HICPSO-based positioning algorithm is improved by 4.28% and 4.76% respectively, and the stability is improved by one order of magnitude.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.