{"title":"采用多模态激光光学超声波光谱(LOUS)方法研究元素组成对高密度钨合金工程特性的影响","authors":"","doi":"10.1016/j.optlaseng.2024.108555","DOIUrl":null,"url":null,"abstract":"<div><p>The impact of elemental composition on the engineering properties of high-density tungsten alloy is crucial, particularly in relation to grain size, hardness, elastic modulus, and surface degradation. This study introduces a new multimodal laser opto-ultrasonic spectroscopy (LOUS) technique, which simultaneously integrates the benefits of laser-induced breakdown spectroscopy (LIBS) and laser ultrasonic testing to evaluate the engineering properties of tungsten alloys. The findings indicate that the increasing tungsten concentration significantly enhances the samples' hardness, grain size and elastic modulus. The composition of elements and hardness were assessed using a calibration curve derived from the emission intensity ratio (W-II/W-I) and plasma electron temperature (<em>T<sub>e</sub></em>) in optical emission. The correlation results of (W-II/W-I) and <em>T<sub>e</sub></em> showed significant enhancement with the increase of hardness with a regression coefficient (R<sup>2</sup> ≥ 0.996), validating the Saha-Eggert relation and underscoring model effectiveness. Additionally, the correlation of the laser ultrasonic testing parameters (attenuation coefficient and velocities) in assessing grain size and elastic modulus showed good reliability (R<sup>2</sup>≥0.993) when compared to the results obtained from conventional optical microscopy and tensile testing. The results underscore the accuracy and predictive ability of the LOUS method for <em>in-situ</em> characterization.</p></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal laser opto-ultrasonic spectroscopy (LOUS) Approach to investigate the impact of elemental composition on the engineering properties of high-density tungsten alloys'\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The impact of elemental composition on the engineering properties of high-density tungsten alloy is crucial, particularly in relation to grain size, hardness, elastic modulus, and surface degradation. This study introduces a new multimodal laser opto-ultrasonic spectroscopy (LOUS) technique, which simultaneously integrates the benefits of laser-induced breakdown spectroscopy (LIBS) and laser ultrasonic testing to evaluate the engineering properties of tungsten alloys. The findings indicate that the increasing tungsten concentration significantly enhances the samples' hardness, grain size and elastic modulus. The composition of elements and hardness were assessed using a calibration curve derived from the emission intensity ratio (W-II/W-I) and plasma electron temperature (<em>T<sub>e</sub></em>) in optical emission. The correlation results of (W-II/W-I) and <em>T<sub>e</sub></em> showed significant enhancement with the increase of hardness with a regression coefficient (R<sup>2</sup> ≥ 0.996), validating the Saha-Eggert relation and underscoring model effectiveness. Additionally, the correlation of the laser ultrasonic testing parameters (attenuation coefficient and velocities) in assessing grain size and elastic modulus showed good reliability (R<sup>2</sup>≥0.993) when compared to the results obtained from conventional optical microscopy and tensile testing. The results underscore the accuracy and predictive ability of the LOUS method for <em>in-situ</em> characterization.</p></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005335\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005335","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
元素组成对高密度钨合金工程特性的影响至关重要,尤其是在晶粒尺寸、硬度、弹性模量和表面降解方面。本研究介绍了一种新的多模式激光光学超声波谱(LOUS)技术,该技术同时集成了激光诱导击穿光谱(LIBS)和激光超声波测试的优点,用于评估钨合金的工程特性。研究结果表明,钨浓度的增加会显著提高样品的硬度、晶粒度和弹性模量。根据光学发射中的发射强度比(W-II/W-I)和等离子体电子温度(Te)得出的校准曲线,对元素组成和硬度进行了评估。(W-II/W-I) 和 Te 的相关结果表明,随着硬度的增加,相关系数(R2 ≥ 0.996)显著提高,验证了 Saha-Eggert 关系并强调了模型的有效性。此外,在评估晶粒尺寸和弹性模量时,激光超声波测试参数(衰减系数和速度)与传统光学显微镜和拉伸测试结果的相关性显示出良好的可靠性(R2≥0.993)。这些结果凸显了 LOUS 方法在原位表征方面的准确性和预测能力。
Multimodal laser opto-ultrasonic spectroscopy (LOUS) Approach to investigate the impact of elemental composition on the engineering properties of high-density tungsten alloys'
The impact of elemental composition on the engineering properties of high-density tungsten alloy is crucial, particularly in relation to grain size, hardness, elastic modulus, and surface degradation. This study introduces a new multimodal laser opto-ultrasonic spectroscopy (LOUS) technique, which simultaneously integrates the benefits of laser-induced breakdown spectroscopy (LIBS) and laser ultrasonic testing to evaluate the engineering properties of tungsten alloys. The findings indicate that the increasing tungsten concentration significantly enhances the samples' hardness, grain size and elastic modulus. The composition of elements and hardness were assessed using a calibration curve derived from the emission intensity ratio (W-II/W-I) and plasma electron temperature (Te) in optical emission. The correlation results of (W-II/W-I) and Te showed significant enhancement with the increase of hardness with a regression coefficient (R2 ≥ 0.996), validating the Saha-Eggert relation and underscoring model effectiveness. Additionally, the correlation of the laser ultrasonic testing parameters (attenuation coefficient and velocities) in assessing grain size and elastic modulus showed good reliability (R2≥0.993) when compared to the results obtained from conventional optical microscopy and tensile testing. The results underscore the accuracy and predictive ability of the LOUS method for in-situ characterization.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques