{"title":"电磁力及其有限元计算","authors":"François Henrotte, Christophe Geuzaine","doi":"10.1002/jnm.3290","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces the concepts of differential geometry that are necessary to establish a systematic definition for electromagnetic forces by means of a natural thermodynamic approach. It is shown that standard electromagnetic force formulae used in finite element computational electromagnetism are particular instances of that general approach. Finally, the paper offers a complete conceptual framework, as well as a mathematical toolbox, to derive electromagnetic force formulae for multi-physics finite element models with complex materials.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic forces and their finite element computation\",\"authors\":\"François Henrotte, Christophe Geuzaine\",\"doi\":\"10.1002/jnm.3290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces the concepts of differential geometry that are necessary to establish a systematic definition for electromagnetic forces by means of a natural thermodynamic approach. It is shown that standard electromagnetic force formulae used in finite element computational electromagnetism are particular instances of that general approach. Finally, the paper offers a complete conceptual framework, as well as a mathematical toolbox, to derive electromagnetic force formulae for multi-physics finite element models with complex materials.</p>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3290\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3290","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Electromagnetic forces and their finite element computation
This paper introduces the concepts of differential geometry that are necessary to establish a systematic definition for electromagnetic forces by means of a natural thermodynamic approach. It is shown that standard electromagnetic force formulae used in finite element computational electromagnetism are particular instances of that general approach. Finally, the paper offers a complete conceptual framework, as well as a mathematical toolbox, to derive electromagnetic force formulae for multi-physics finite element models with complex materials.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.