T. J. Barrett, A. J. King, G. Degli-Alessandrini, S. J. Hammond, E. Humphreys-Williams, B. Schmidt, R. C. Greenwood, F. A. J. Abernethy, M. Anand, E. Rudnickaitė
{"title":"对历史上的单质闪长岩 Padvarninkai 的矿物学和同位素研究","authors":"T. J. Barrett, A. J. King, G. Degli-Alessandrini, S. J. Hammond, E. Humphreys-Williams, B. Schmidt, R. C. Greenwood, F. A. J. Abernethy, M. Anand, E. Rudnickaitė","doi":"10.1111/maps.14229","DOIUrl":null,"url":null,"abstract":"<p>The Padvarninkai meteorite is a relatively understudied eucrite, initially misclassified as a shergottite given its strong shock characteristics. In this study, a comprehensive examination of the petrology; mineral composition; major, minor, and trace element abundances; and isotopic composition (C, O) is presented. Padvarninkai is a monomict eucrite consisting of a fine to coarse-grained lithology and impact melt veins. Pyroxene grains are typically severely fractured and mosaicked whilst plagioclase is either partially or totally converted to maskelynite. Based on shock features observed in pyroxene, plagioclase, and apatite, Padvarninkai can be given a shock classification of M-S4/5. Despite the high shock experienced by this sample, some of the original igneous textures remain. Compositionally, Padvarninkai is a main group eucrite with a flat REE pattern (~10–12 × CI) and elevated Ni abundances. Whilst both new and literature oxygen isotopes are similar to other eucrites, however, Padvarninkai displays an anomalously high δ<sup>13</sup>C value. To reconcile the high Ni and δ<sup>13</sup>C value, impact contamination modeling was conducted. These models could not reconcile both the high Ni and δ<sup>13</sup>C value with the eucritic δ<sup>18</sup>O values, arguing against impact as a source for these anomalies.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 9","pages":"2505-2522"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14229","citationCount":"0","resultStr":"{\"title\":\"A mineralogical and isotopic study of the historic monomict eucrite Padvarninkai\",\"authors\":\"T. J. Barrett, A. J. King, G. Degli-Alessandrini, S. J. Hammond, E. Humphreys-Williams, B. Schmidt, R. C. Greenwood, F. A. J. Abernethy, M. Anand, E. Rudnickaitė\",\"doi\":\"10.1111/maps.14229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Padvarninkai meteorite is a relatively understudied eucrite, initially misclassified as a shergottite given its strong shock characteristics. In this study, a comprehensive examination of the petrology; mineral composition; major, minor, and trace element abundances; and isotopic composition (C, O) is presented. Padvarninkai is a monomict eucrite consisting of a fine to coarse-grained lithology and impact melt veins. Pyroxene grains are typically severely fractured and mosaicked whilst plagioclase is either partially or totally converted to maskelynite. Based on shock features observed in pyroxene, plagioclase, and apatite, Padvarninkai can be given a shock classification of M-S4/5. Despite the high shock experienced by this sample, some of the original igneous textures remain. Compositionally, Padvarninkai is a main group eucrite with a flat REE pattern (~10–12 × CI) and elevated Ni abundances. Whilst both new and literature oxygen isotopes are similar to other eucrites, however, Padvarninkai displays an anomalously high δ<sup>13</sup>C value. To reconcile the high Ni and δ<sup>13</sup>C value, impact contamination modeling was conducted. These models could not reconcile both the high Ni and δ<sup>13</sup>C value with the eucritic δ<sup>18</sup>O values, arguing against impact as a source for these anomalies.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"59 9\",\"pages\":\"2505-2522\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14229\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.14229\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14229","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
帕德瓦宁凯陨石是一块研究相对不足的黑云母陨石,由于其强烈的冲击特征,最初被误认为是舍尔戈特陨石。在这项研究中,对岩石学、矿物成分、主要元素、次要元素和微量元素丰度以及同位素成分(C、O)进行了全面考察。帕德瓦宁凯岩是由细粒至粗粒岩性和冲击熔脉组成的单斜闪长岩。辉石颗粒通常断裂严重并呈镶嵌状,而斜长石则部分或全部转化为蒙脱石。根据在辉石、斜长石和磷灰石中观察到的冲击特征,Padvarninkai 的冲击分类为 M-S4/5。尽管该样本经历了强烈的冲击,但仍保留了一些原始火成岩的纹理。从成分上看,Padvarninkai属于主族闪长岩,具有平坦的REE形态(约10-12 × CI)和较高的镍丰度。虽然新的和文献记载的氧同位素与其他白云母相似,但是帕德瓦宁凯却显示出异常高的δ13C值。为了调和高 Ni 值和δ13C 值,进行了撞击污染建模。这些模型无法将镍和δ13C的高值与欧几里得δ18O的高值协调起来,从而否定了撞击是这些异常的来源。
A mineralogical and isotopic study of the historic monomict eucrite Padvarninkai
The Padvarninkai meteorite is a relatively understudied eucrite, initially misclassified as a shergottite given its strong shock characteristics. In this study, a comprehensive examination of the petrology; mineral composition; major, minor, and trace element abundances; and isotopic composition (C, O) is presented. Padvarninkai is a monomict eucrite consisting of a fine to coarse-grained lithology and impact melt veins. Pyroxene grains are typically severely fractured and mosaicked whilst plagioclase is either partially or totally converted to maskelynite. Based on shock features observed in pyroxene, plagioclase, and apatite, Padvarninkai can be given a shock classification of M-S4/5. Despite the high shock experienced by this sample, some of the original igneous textures remain. Compositionally, Padvarninkai is a main group eucrite with a flat REE pattern (~10–12 × CI) and elevated Ni abundances. Whilst both new and literature oxygen isotopes are similar to other eucrites, however, Padvarninkai displays an anomalously high δ13C value. To reconcile the high Ni and δ13C value, impact contamination modeling was conducted. These models could not reconcile both the high Ni and δ13C value with the eucritic δ18O values, arguing against impact as a source for these anomalies.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.