Xueyan Wang, Min Liu, Ruinan Yang, Xiaobo Cui, Jie Liu, Yu Zhang, Yizhou He, Li Yu, Fei Ma, Xiong Zhang, Yuanyuan Zhang, Shengyi Liu, Peiwu Li, Liangxiao Zhang
{"title":"代谢组和转录组分析揭示茉莉酸甲酯对甘蓝型油菜植物甾醇生物合成的影响","authors":"Xueyan Wang, Min Liu, Ruinan Yang, Xiaobo Cui, Jie Liu, Yu Zhang, Yizhou He, Li Yu, Fei Ma, Xiong Zhang, Yuanyuan Zhang, Shengyi Liu, Peiwu Li, Liangxiao Zhang","doi":"10.1002/fft2.420","DOIUrl":null,"url":null,"abstract":"<p>Phytosterols are a group of nonpharmacological alternatives to prevent or control dyslipidemias and cardiovascular disease. Increasing the phytosterol content in rapeseed oil is important to enhance daily phytosterol intake. However, the mechanisms of biosynthesis and regulation of phytosterol in rapeseed remain unclear. In this study, two representative rapeseed cultivars with extremely high (H286) and low (H174) phytosterol content were selected and treated with various concentrations (0.5−5.0 mM) of methyl jasmonate (MeJA). The results showed that treatment with 1 mM MeJA increased the phytosterol content of H174 and H286 by 17% and 27%, respectively. Based on the multiomics data, a gene-phytosterol regulatory network was constructed. We deduced that MeJA down-regulated the expression level of <i>BnaA07.SCL15</i>, <i>BnaC05.MYB61</i>, and <i>BnaC03.AGL2</i>, thereby promoting the phytosterol biosynthesis , and which were validated through the transient expression in tobacco. Notably, overexpression of <i>Arabidopsis BnaA07.SCL15</i> exhibited a significant decrease in their phytosterol content. Additionally, an integrative analysis of the high-resolution metabolome and transcriptome revealed that the accumulation patterns of 997 metabolites were highly correlated with their corresponding gene expression patterns. MeJA also significantly affected flavonoid biosynthesis, α-linolenic acid metabolism, and amino acid metabolism. Furthermore, <i>BnaA09.TT8</i> and <i>BnaC09.TT8</i> were found to regulate of flavonoids. Overall, this study provides valuable insights into the phytosterol biosynthesis in rapeseed and offers a simple and effective approach for improving rapeseed quality.</p>","PeriodicalId":73042,"journal":{"name":"Food frontiers","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fft2.420","citationCount":"0","resultStr":"{\"title\":\"Metabolome and transcriptome analysis reveal the effect of methyl jasmonate on phytosterol biosynthesis in Brassica napus\",\"authors\":\"Xueyan Wang, Min Liu, Ruinan Yang, Xiaobo Cui, Jie Liu, Yu Zhang, Yizhou He, Li Yu, Fei Ma, Xiong Zhang, Yuanyuan Zhang, Shengyi Liu, Peiwu Li, Liangxiao Zhang\",\"doi\":\"10.1002/fft2.420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phytosterols are a group of nonpharmacological alternatives to prevent or control dyslipidemias and cardiovascular disease. Increasing the phytosterol content in rapeseed oil is important to enhance daily phytosterol intake. However, the mechanisms of biosynthesis and regulation of phytosterol in rapeseed remain unclear. In this study, two representative rapeseed cultivars with extremely high (H286) and low (H174) phytosterol content were selected and treated with various concentrations (0.5−5.0 mM) of methyl jasmonate (MeJA). The results showed that treatment with 1 mM MeJA increased the phytosterol content of H174 and H286 by 17% and 27%, respectively. Based on the multiomics data, a gene-phytosterol regulatory network was constructed. We deduced that MeJA down-regulated the expression level of <i>BnaA07.SCL15</i>, <i>BnaC05.MYB61</i>, and <i>BnaC03.AGL2</i>, thereby promoting the phytosterol biosynthesis , and which were validated through the transient expression in tobacco. Notably, overexpression of <i>Arabidopsis BnaA07.SCL15</i> exhibited a significant decrease in their phytosterol content. Additionally, an integrative analysis of the high-resolution metabolome and transcriptome revealed that the accumulation patterns of 997 metabolites were highly correlated with their corresponding gene expression patterns. MeJA also significantly affected flavonoid biosynthesis, α-linolenic acid metabolism, and amino acid metabolism. Furthermore, <i>BnaA09.TT8</i> and <i>BnaC09.TT8</i> were found to regulate of flavonoids. Overall, this study provides valuable insights into the phytosterol biosynthesis in rapeseed and offers a simple and effective approach for improving rapeseed quality.</p>\",\"PeriodicalId\":73042,\"journal\":{\"name\":\"Food frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fft2.420\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fft2.420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food frontiers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fft2.420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
植物甾醇是一组预防或控制血脂异常和心血管疾病的非药物替代品。增加菜籽油中的植物甾醇含量对于提高每日植物甾醇摄入量非常重要。然而,油菜籽中植物甾醇的生物合成和调节机制仍不清楚。本研究选择了植物甾醇含量极高(H286)和极低(H174)的两个代表性油菜品种,并用不同浓度(0.5-5.0 mM)的茉莉酸甲酯(MeJA)进行处理。结果表明,用 1 mM MeJA 处理后,H174 和 H286 的植物甾醇含量分别增加了 17% 和 27%。基于多组学数据,我们构建了基因-植物甾醇调控网络。我们推断 MeJA 下调了 BnaA07.SCL15、BnaC05.MYB61 和 BnaC03.AGL2 的表达水平,从而促进了植物甾醇的生物合成,并通过在烟草中的瞬时表达进行了验证。值得注意的是,拟南芥 BnaA07.SCL15 的过表达会显著降低其植物甾醇含量。此外,对高分辨率代谢组和转录组的综合分析表明,997 种代谢物的积累模式与其相应的基因表达模式高度相关。MeJA 还明显影响黄酮类化合物的生物合成、α-亚麻酸代谢和氨基酸代谢。此外,还发现 BnaA09.TT8 和 BnaC09.TT8 对黄酮类化合物有调节作用。总之,这项研究为油菜籽中植物甾醇的生物合成提供了宝贵的见解,并为改善油菜籽品质提供了一种简单有效的方法。
Metabolome and transcriptome analysis reveal the effect of methyl jasmonate on phytosterol biosynthesis in Brassica napus
Phytosterols are a group of nonpharmacological alternatives to prevent or control dyslipidemias and cardiovascular disease. Increasing the phytosterol content in rapeseed oil is important to enhance daily phytosterol intake. However, the mechanisms of biosynthesis and regulation of phytosterol in rapeseed remain unclear. In this study, two representative rapeseed cultivars with extremely high (H286) and low (H174) phytosterol content were selected and treated with various concentrations (0.5−5.0 mM) of methyl jasmonate (MeJA). The results showed that treatment with 1 mM MeJA increased the phytosterol content of H174 and H286 by 17% and 27%, respectively. Based on the multiomics data, a gene-phytosterol regulatory network was constructed. We deduced that MeJA down-regulated the expression level of BnaA07.SCL15, BnaC05.MYB61, and BnaC03.AGL2, thereby promoting the phytosterol biosynthesis , and which were validated through the transient expression in tobacco. Notably, overexpression of Arabidopsis BnaA07.SCL15 exhibited a significant decrease in their phytosterol content. Additionally, an integrative analysis of the high-resolution metabolome and transcriptome revealed that the accumulation patterns of 997 metabolites were highly correlated with their corresponding gene expression patterns. MeJA also significantly affected flavonoid biosynthesis, α-linolenic acid metabolism, and amino acid metabolism. Furthermore, BnaA09.TT8 and BnaC09.TT8 were found to regulate of flavonoids. Overall, this study provides valuable insights into the phytosterol biosynthesis in rapeseed and offers a simple and effective approach for improving rapeseed quality.