{"title":"离子液体对软环氧胺电催化剂的影响","authors":"","doi":"10.1016/j.polymer.2024.127601","DOIUrl":null,"url":null,"abstract":"<div><p>Energy conversion represents a challenge in various fields of applications such as soft robotics or microfluidics technologies, particularly in terms of electromechanical coupling for actuators. The dielectric elastomers are a variety of electroactive polymers (EAP) which require high electric fields to be used as actuators. It is well-known that the presence of ionic impurities can have an influence of their electro-mechanical response under high electric field (i.e. above 1 MV/m). More precisely, it can be responsible for the bending of the sample under constant electric field. Here, we investigate the impact of a small content, <em>i.e.</em> from 0.1 wt% to 10 wt% of an imidazolium Ionic Liquid (IL) on the electromechanical response of a soft epoxy-amine network. The interest of this study therefore lies in its position at the frontier between dielectric polymers and ionic polymers. Dielectric spectroscopy revealed a significant increase of electric conductivity (≈2 orders of magnitude) when adding only 0.1 wt% of IL and up to 4 orders of magnitude with 10 wt% of IL at T = 20 °C for f = 10 Hz. It also evidenced the presence of the electrode polarization for all the samples doped with IL. The bending test carried out at E = 0.1 MV/m revealed no bending for pure epoxy-amine and a slow kinetics of bending for all the samples doped with IL with displacement evolving throughout the experiment (i.e. over 4 h). As evidenced by dielectric spectroscopy and bending tests, it is clear that the presence of a small quantity of ionic moieties (whether doping agent or impurity) can strongly modify the electromechanical behavior of elastomer commonly described as dielectric.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ionic liquid on soft epoxy-amine electroactuators\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy conversion represents a challenge in various fields of applications such as soft robotics or microfluidics technologies, particularly in terms of electromechanical coupling for actuators. The dielectric elastomers are a variety of electroactive polymers (EAP) which require high electric fields to be used as actuators. It is well-known that the presence of ionic impurities can have an influence of their electro-mechanical response under high electric field (i.e. above 1 MV/m). More precisely, it can be responsible for the bending of the sample under constant electric field. Here, we investigate the impact of a small content, <em>i.e.</em> from 0.1 wt% to 10 wt% of an imidazolium Ionic Liquid (IL) on the electromechanical response of a soft epoxy-amine network. The interest of this study therefore lies in its position at the frontier between dielectric polymers and ionic polymers. Dielectric spectroscopy revealed a significant increase of electric conductivity (≈2 orders of magnitude) when adding only 0.1 wt% of IL and up to 4 orders of magnitude with 10 wt% of IL at T = 20 °C for f = 10 Hz. It also evidenced the presence of the electrode polarization for all the samples doped with IL. The bending test carried out at E = 0.1 MV/m revealed no bending for pure epoxy-amine and a slow kinetics of bending for all the samples doped with IL with displacement evolving throughout the experiment (i.e. over 4 h). As evidenced by dielectric spectroscopy and bending tests, it is clear that the presence of a small quantity of ionic moieties (whether doping agent or impurity) can strongly modify the electromechanical behavior of elastomer commonly described as dielectric.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124009376\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124009376","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
能量转换是软机器人或微流体技术等多个应用领域面临的挑战,尤其是在致动器的机电耦合方面。介电弹性体是一种电活性聚合物(EAP),需要高电场才能用作致动器。众所周知,离子杂质的存在会影响它们在高电场(即 1 MV/m 以上)下的电动机械响应。更确切地说,离子杂质会导致样品在恒定电场下发生弯曲。在此,我们研究了少量咪唑离子液体(IL)(从 0.1 wt% 到 10 wt%)对软环氧胺网络机电响应的影响。因此,这项研究的意义在于它处于介电聚合物和离子聚合物之间的前沿。电介质光谱显示,仅添加 0.1 wt% 的 IL 时,电导率就会显著增加(≈2 个数量级),而添加 10 wt% 的 IL 时,电导率会增加到 4 个数量级(T = 20 °C,f = 10 Hz)。这也证明了所有掺有 IL 的样品都存在电极极化现象。在 E = 0.1 MV/m 条件下进行的弯曲测试表明,纯环氧胺没有弯曲,而所有掺杂了 IL 的样品在整个实验过程中(即 4 小时内)都有缓慢的弯曲动力学,位移不断变化。介电光谱和弯曲试验表明,少量离子分子(无论是掺杂剂还是杂质)的存在可以强烈改变通常被描述为介电体的弹性体的机电行为。
Effect of ionic liquid on soft epoxy-amine electroactuators
Energy conversion represents a challenge in various fields of applications such as soft robotics or microfluidics technologies, particularly in terms of electromechanical coupling for actuators. The dielectric elastomers are a variety of electroactive polymers (EAP) which require high electric fields to be used as actuators. It is well-known that the presence of ionic impurities can have an influence of their electro-mechanical response under high electric field (i.e. above 1 MV/m). More precisely, it can be responsible for the bending of the sample under constant electric field. Here, we investigate the impact of a small content, i.e. from 0.1 wt% to 10 wt% of an imidazolium Ionic Liquid (IL) on the electromechanical response of a soft epoxy-amine network. The interest of this study therefore lies in its position at the frontier between dielectric polymers and ionic polymers. Dielectric spectroscopy revealed a significant increase of electric conductivity (≈2 orders of magnitude) when adding only 0.1 wt% of IL and up to 4 orders of magnitude with 10 wt% of IL at T = 20 °C for f = 10 Hz. It also evidenced the presence of the electrode polarization for all the samples doped with IL. The bending test carried out at E = 0.1 MV/m revealed no bending for pure epoxy-amine and a slow kinetics of bending for all the samples doped with IL with displacement evolving throughout the experiment (i.e. over 4 h). As evidenced by dielectric spectroscopy and bending tests, it is clear that the presence of a small quantity of ionic moieties (whether doping agent or impurity) can strongly modify the electromechanical behavior of elastomer commonly described as dielectric.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.