离子液体对软环氧胺电催化剂的影响

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-09-07 DOI:10.1016/j.polymer.2024.127601
{"title":"离子液体对软环氧胺电催化剂的影响","authors":"","doi":"10.1016/j.polymer.2024.127601","DOIUrl":null,"url":null,"abstract":"<div><p>Energy conversion represents a challenge in various fields of applications such as soft robotics or microfluidics technologies, particularly in terms of electromechanical coupling for actuators. The dielectric elastomers are a variety of electroactive polymers (EAP) which require high electric fields to be used as actuators. It is well-known that the presence of ionic impurities can have an influence of their electro-mechanical response under high electric field (i.e. above 1 MV/m). More precisely, it can be responsible for the bending of the sample under constant electric field. Here, we investigate the impact of a small content, <em>i.e.</em> from 0.1 wt% to 10 wt% of an imidazolium Ionic Liquid (IL) on the electromechanical response of a soft epoxy-amine network. The interest of this study therefore lies in its position at the frontier between dielectric polymers and ionic polymers. Dielectric spectroscopy revealed a significant increase of electric conductivity (≈2 orders of magnitude) when adding only 0.1 wt% of IL and up to 4 orders of magnitude with 10 wt% of IL at T = 20 °C for f = 10 Hz. It also evidenced the presence of the electrode polarization for all the samples doped with IL. The bending test carried out at E = 0.1 MV/m revealed no bending for pure epoxy-amine and a slow kinetics of bending for all the samples doped with IL with displacement evolving throughout the experiment (i.e. over 4 h). As evidenced by dielectric spectroscopy and bending tests, it is clear that the presence of a small quantity of ionic moieties (whether doping agent or impurity) can strongly modify the electromechanical behavior of elastomer commonly described as dielectric.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ionic liquid on soft epoxy-amine electroactuators\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy conversion represents a challenge in various fields of applications such as soft robotics or microfluidics technologies, particularly in terms of electromechanical coupling for actuators. The dielectric elastomers are a variety of electroactive polymers (EAP) which require high electric fields to be used as actuators. It is well-known that the presence of ionic impurities can have an influence of their electro-mechanical response under high electric field (i.e. above 1 MV/m). More precisely, it can be responsible for the bending of the sample under constant electric field. Here, we investigate the impact of a small content, <em>i.e.</em> from 0.1 wt% to 10 wt% of an imidazolium Ionic Liquid (IL) on the electromechanical response of a soft epoxy-amine network. The interest of this study therefore lies in its position at the frontier between dielectric polymers and ionic polymers. Dielectric spectroscopy revealed a significant increase of electric conductivity (≈2 orders of magnitude) when adding only 0.1 wt% of IL and up to 4 orders of magnitude with 10 wt% of IL at T = 20 °C for f = 10 Hz. It also evidenced the presence of the electrode polarization for all the samples doped with IL. The bending test carried out at E = 0.1 MV/m revealed no bending for pure epoxy-amine and a slow kinetics of bending for all the samples doped with IL with displacement evolving throughout the experiment (i.e. over 4 h). As evidenced by dielectric spectroscopy and bending tests, it is clear that the presence of a small quantity of ionic moieties (whether doping agent or impurity) can strongly modify the electromechanical behavior of elastomer commonly described as dielectric.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124009376\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124009376","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

能量转换是软机器人或微流体技术等多个应用领域面临的挑战,尤其是在致动器的机电耦合方面。介电弹性体是一种电活性聚合物(EAP),需要高电场才能用作致动器。众所周知,离子杂质的存在会影响它们在高电场(即 1 MV/m 以上)下的电动机械响应。更确切地说,离子杂质会导致样品在恒定电场下发生弯曲。在此,我们研究了少量咪唑离子液体(IL)(从 0.1 wt% 到 10 wt%)对软环氧胺网络机电响应的影响。因此,这项研究的意义在于它处于介电聚合物和离子聚合物之间的前沿。电介质光谱显示,仅添加 0.1 wt% 的 IL 时,电导率就会显著增加(≈2 个数量级),而添加 10 wt% 的 IL 时,电导率会增加到 4 个数量级(T = 20 °C,f = 10 Hz)。这也证明了所有掺有 IL 的样品都存在电极极化现象。在 E = 0.1 MV/m 条件下进行的弯曲测试表明,纯环氧胺没有弯曲,而所有掺杂了 IL 的样品在整个实验过程中(即 4 小时内)都有缓慢的弯曲动力学,位移不断变化。介电光谱和弯曲试验表明,少量离子分子(无论是掺杂剂还是杂质)的存在可以强烈改变通常被描述为介电体的弹性体的机电行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of ionic liquid on soft epoxy-amine electroactuators

Energy conversion represents a challenge in various fields of applications such as soft robotics or microfluidics technologies, particularly in terms of electromechanical coupling for actuators. The dielectric elastomers are a variety of electroactive polymers (EAP) which require high electric fields to be used as actuators. It is well-known that the presence of ionic impurities can have an influence of their electro-mechanical response under high electric field (i.e. above 1 MV/m). More precisely, it can be responsible for the bending of the sample under constant electric field. Here, we investigate the impact of a small content, i.e. from 0.1 wt% to 10 wt% of an imidazolium Ionic Liquid (IL) on the electromechanical response of a soft epoxy-amine network. The interest of this study therefore lies in its position at the frontier between dielectric polymers and ionic polymers. Dielectric spectroscopy revealed a significant increase of electric conductivity (≈2 orders of magnitude) when adding only 0.1 wt% of IL and up to 4 orders of magnitude with 10 wt% of IL at T = 20 °C for f = 10 Hz. It also evidenced the presence of the electrode polarization for all the samples doped with IL. The bending test carried out at E = 0.1 MV/m revealed no bending for pure epoxy-amine and a slow kinetics of bending for all the samples doped with IL with displacement evolving throughout the experiment (i.e. over 4 h). As evidenced by dielectric spectroscopy and bending tests, it is clear that the presence of a small quantity of ionic moieties (whether doping agent or impurity) can strongly modify the electromechanical behavior of elastomer commonly described as dielectric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Synergistic integration of plant derived galactomannan and MXene to produce multifunctional nanocomposites with antibacterial and osteogenic properties Ultra-tough, strong and transparent bio-based waterborne polyurethanes with exceptional anti-corrosion properties In-situ fabricated hexagonal PDMS microsphere arrays for substrate-mode light extraction in blue fluorescent organic light emitting diodes Matching Combination of Amorphous Ionic Hydrogel with Elastic Fabric Enables Integrated Properties for Wearable Sensing Effects of crosslinked rubber particles on rheological behaviors of ethylene-propylene-diene rubber/ polypropylene thermoplastic vulcanizates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1