利用荧光/光声双模探针对马兜铃酸 I 诱导的肾毒性小鼠模型中的线粒体酸化进行体内靶向成像

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2024-09-11 DOI:10.1016/j.mtbio.2024.101240
Li Xu , Li Chen , Hongwen Liu , Xingwang Chen , Shenghang Zhang
{"title":"利用荧光/光声双模探针对马兜铃酸 I 诱导的肾毒性小鼠模型中的线粒体酸化进行体内靶向成像","authors":"Li Xu ,&nbsp;Li Chen ,&nbsp;Hongwen Liu ,&nbsp;Xingwang Chen ,&nbsp;Shenghang Zhang","doi":"10.1016/j.mtbio.2024.101240","DOIUrl":null,"url":null,"abstract":"<div><p>Aristolochic acid I (AAI), a natural compound in aristolochia type Chinese medicinal herb, is generally acknowledged to have nephrotoxicity, which may be associated with mitophagy. Mitophagy is a cellular process with important functions that drive AAI-induced renal injury. Mitochondrial pH is currently measured by fluorescent probes in cell culture, but existing probes do not allow for in situ imaging of AAI-induced mitophagy in vivo. We developed a ratiometric fluorescent/PA dual-modal probe with a silicon rhodamine fluorophore and a pH-sensitive hemicyanine dye covalently linked via a short chain to obtain a FRET type probe. The probe was used to measure AAI-mediated mitochondrial acidification in live cells and in vivo. The Förster resonance energy transfer (FRET)-mediated ratiometric and bimodal method can efficiently eliminate signal variability associated with the commonly used one-emission and single detection mode by ratiometric two channels of the donor and acceptor. The probe has good water-solubility and low molecular weight with two positively charged, facilitating its precise targeting into renal mitochondria, where the fluorescent/PA changes in response to mitochondrial acidification, enabling dynamic and semi-quantitative mapping of subtle changes in mitochondrial pH in AAI-induced nephrotoxicity mouse model for the first time. Also, the joint use of L-carnitine could mitigate the mitophagy in AAI-induced nephrotoxicity.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"28 ","pages":"Article 101240"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424003016/pdfft?md5=06839d4d87b8973e74ad4bf8992f6a8a&pid=1-s2.0-S2590006424003016-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In vivo targeted-imaging of mitochondrial acidification in an aristolochic acid I-induced nephrotoxicity mouse model by a fluorescent/photoacoustic bimodal probe\",\"authors\":\"Li Xu ,&nbsp;Li Chen ,&nbsp;Hongwen Liu ,&nbsp;Xingwang Chen ,&nbsp;Shenghang Zhang\",\"doi\":\"10.1016/j.mtbio.2024.101240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aristolochic acid I (AAI), a natural compound in aristolochia type Chinese medicinal herb, is generally acknowledged to have nephrotoxicity, which may be associated with mitophagy. Mitophagy is a cellular process with important functions that drive AAI-induced renal injury. Mitochondrial pH is currently measured by fluorescent probes in cell culture, but existing probes do not allow for in situ imaging of AAI-induced mitophagy in vivo. We developed a ratiometric fluorescent/PA dual-modal probe with a silicon rhodamine fluorophore and a pH-sensitive hemicyanine dye covalently linked via a short chain to obtain a FRET type probe. The probe was used to measure AAI-mediated mitochondrial acidification in live cells and in vivo. The Förster resonance energy transfer (FRET)-mediated ratiometric and bimodal method can efficiently eliminate signal variability associated with the commonly used one-emission and single detection mode by ratiometric two channels of the donor and acceptor. The probe has good water-solubility and low molecular weight with two positively charged, facilitating its precise targeting into renal mitochondria, where the fluorescent/PA changes in response to mitochondrial acidification, enabling dynamic and semi-quantitative mapping of subtle changes in mitochondrial pH in AAI-induced nephrotoxicity mouse model for the first time. Also, the joint use of L-carnitine could mitigate the mitophagy in AAI-induced nephrotoxicity.</p></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"28 \",\"pages\":\"Article 101240\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003016/pdfft?md5=06839d4d87b8973e74ad4bf8992f6a8a&pid=1-s2.0-S2590006424003016-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003016\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

马兜铃酸 I(AAI)是马兜铃类中药中的一种天然化合物,人们普遍认为它具有肾毒性,这可能与有丝分裂有关。线粒体吞噬是一个具有重要功能的细胞过程,它是 AAI 诱导肾损伤的驱动因素。线粒体 pH 值目前在细胞培养中通过荧光探针进行测量,但现有探针无法对 AAI 诱导的体内有丝分裂进行原位成像。我们开发了一种比率计荧光/PA 双模式探针,它由硅罗丹明荧光团和 pH 敏感的半氰胺染料通过短链共价连接而成,是一种 FRET 型探针。该探针用于测量活细胞和体内 AAI 介导的线粒体酸化。以佛尔斯特共振能量转移(FRET)为介导的比率测量和双模方法通过对供体和受体的两个通道进行比率测量,可以有效消除常用的单发射和单检测模式带来的信号变异。该探针具有良好的水溶性和带两个正电荷的低分子量,有利于精确靶向进入肾线粒体,其荧光/PA随线粒体酸化而变化,首次实现了对AAI诱导的肾毒性小鼠模型线粒体pH微妙变化的动态和半定量测绘。此外,联合使用左旋肉碱可减轻AAI诱导的肾毒性中的线粒体吞噬作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vivo targeted-imaging of mitochondrial acidification in an aristolochic acid I-induced nephrotoxicity mouse model by a fluorescent/photoacoustic bimodal probe

Aristolochic acid I (AAI), a natural compound in aristolochia type Chinese medicinal herb, is generally acknowledged to have nephrotoxicity, which may be associated with mitophagy. Mitophagy is a cellular process with important functions that drive AAI-induced renal injury. Mitochondrial pH is currently measured by fluorescent probes in cell culture, but existing probes do not allow for in situ imaging of AAI-induced mitophagy in vivo. We developed a ratiometric fluorescent/PA dual-modal probe with a silicon rhodamine fluorophore and a pH-sensitive hemicyanine dye covalently linked via a short chain to obtain a FRET type probe. The probe was used to measure AAI-mediated mitochondrial acidification in live cells and in vivo. The Förster resonance energy transfer (FRET)-mediated ratiometric and bimodal method can efficiently eliminate signal variability associated with the commonly used one-emission and single detection mode by ratiometric two channels of the donor and acceptor. The probe has good water-solubility and low molecular weight with two positively charged, facilitating its precise targeting into renal mitochondria, where the fluorescent/PA changes in response to mitochondrial acidification, enabling dynamic and semi-quantitative mapping of subtle changes in mitochondrial pH in AAI-induced nephrotoxicity mouse model for the first time. Also, the joint use of L-carnitine could mitigate the mitophagy in AAI-induced nephrotoxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
A novel nanomedicine integrating ferroptosis and photothermal therapy, well-suitable for PD-L1-mediated immune checkpoint blockade Nickel–titanium alloy porous scaffolds based on a dominant cellular structure manufactured by laser powder bed fusion have satisfactory osteogenic efficacy A high-water retention, self-healing hydrogel thyroid model for surgical training Injectable microgels containing genetically engineered bacteria for colon cancer therapy through programmed Chemokine expression Multifunctional hydrogels loaded with tellurium nanozyme for spinal cord injury repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1