细菌应激体的分子结构和功能

IF 5.9 2区 生物学 Q1 MICROBIOLOGY Current opinion in microbiology Pub Date : 2024-09-12 DOI:10.1016/j.mib.2024.102541
Ziyi Zhao , Fahimeh Hajiahmadi , Maryam S Alehashem , Allison H Williams
{"title":"细菌应激体的分子结构和功能","authors":"Ziyi Zhao ,&nbsp;Fahimeh Hajiahmadi ,&nbsp;Maryam S Alehashem ,&nbsp;Allison H Williams","doi":"10.1016/j.mib.2024.102541","DOIUrl":null,"url":null,"abstract":"<div><p>The bacterial stressosome is a supramolecular multiprotein complex that acts as a critical signal integration and transduction hub, orchestrating cellular responses to environmental stimuli. Recent studies have resolved near-atomic stressosome structures from various bacterial species, revealing assemblies that should be capable of altering their configuration in response to external changes. Further genetic, biochemical, and cell biology research has elucidated interactions and phosphorylation status within the stressosome complex as well as its subcellular localization and mobility within living cells. These insights enhance our comprehension of the stressosome pathways and their roles in directing various survival responses during environmental stress.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"82 ","pages":"Article 102541"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular architecture and function of the bacterial stressosome\",\"authors\":\"Ziyi Zhao ,&nbsp;Fahimeh Hajiahmadi ,&nbsp;Maryam S Alehashem ,&nbsp;Allison H Williams\",\"doi\":\"10.1016/j.mib.2024.102541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The bacterial stressosome is a supramolecular multiprotein complex that acts as a critical signal integration and transduction hub, orchestrating cellular responses to environmental stimuli. Recent studies have resolved near-atomic stressosome structures from various bacterial species, revealing assemblies that should be capable of altering their configuration in response to external changes. Further genetic, biochemical, and cell biology research has elucidated interactions and phosphorylation status within the stressosome complex as well as its subcellular localization and mobility within living cells. These insights enhance our comprehension of the stressosome pathways and their roles in directing various survival responses during environmental stress.</p></div>\",\"PeriodicalId\":10921,\"journal\":{\"name\":\"Current opinion in microbiology\",\"volume\":\"82 \",\"pages\":\"Article 102541\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369527424001176\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527424001176","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌应激体是一种超分子多蛋白复合物,是重要的信号整合和转导枢纽,协调细胞对环境刺激的反应。最近的研究已经解析了不同细菌物种的近原子应激体结构,揭示了应激体能够根据外部变化改变其构型的集合体。进一步的遗传、生化和细胞生物学研究阐明了应激体复合物内部的相互作用和磷酸化状态,以及它在活细胞内的亚细胞定位和流动性。这些见解加深了我们对应激体通路及其在环境压力下指导各种生存反应的作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular architecture and function of the bacterial stressosome

The bacterial stressosome is a supramolecular multiprotein complex that acts as a critical signal integration and transduction hub, orchestrating cellular responses to environmental stimuli. Recent studies have resolved near-atomic stressosome structures from various bacterial species, revealing assemblies that should be capable of altering their configuration in response to external changes. Further genetic, biochemical, and cell biology research has elucidated interactions and phosphorylation status within the stressosome complex as well as its subcellular localization and mobility within living cells. These insights enhance our comprehension of the stressosome pathways and their roles in directing various survival responses during environmental stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in microbiology
Current opinion in microbiology 生物-微生物学
CiteScore
10.00
自引率
0.00%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Host-microbe interactions: bacteria Cell regulation Environmental microbiology Host-microbe interactions: fungi/parasites/viruses Antimicrobials Microbial systems biology Growth and development: eukaryotes/prokaryotes
期刊最新文献
Temporospatial control of topoisomerases by essential cellular processes Editorial overview: Human fungal pathogens: An increasing threat It's complicated: relationships between integrative and conjugative elements and their bacterial hosts How do bacteria tune transcription termination efficiency? Temperature structuring of microbial communities on a global scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1