Roger Gomes Fernandes , Elaine de Andrade Mattos , Victor Murilo Poltronieri da Silva , David Van der Heggen , Philippe F. Smet , Danilo Manzani , Verônica de Carvalho Teixeira , Lucas Carvalho Veloso Rodrigues
{"title":"通过无压粘性烧结获得半透明持久发光玻璃基复合材料","authors":"Roger Gomes Fernandes , Elaine de Andrade Mattos , Victor Murilo Poltronieri da Silva , David Van der Heggen , Philippe F. Smet , Danilo Manzani , Verônica de Carvalho Teixeira , Lucas Carvalho Veloso Rodrigues","doi":"10.1016/j.mtla.2024.102222","DOIUrl":null,"url":null,"abstract":"<div><p>Translucent persistent luminescence glass matrix composites (PeL-GMCs) were successfully obtained for the first time using a pressureless viscous sintering method with silicate glass as the host material. Initially, persistent luminescence microparticles (PeL-MPs) of SrAl<sub>2</sub>O<sub>4</sub>: Eu<sup>2+</sup>; Dy<sup>3+</sup> were prepared by microwave-assisted synthesis under a reducing atmosphere. To obtain persistent luminescent glass matrix composites, 1 wt. % of these particles were mixed with soda-lime-silicate glass beads and pressed into pellets. Subsequently, the disk-shaped samples were heat-treated through pressureless viscous sintering. Despite some material porosity, the PeL-GMCs exhibited translucency and prolonged persistent luminescence <span><math><mrow><mo>(</mo><mrow><mo>∼</mo><mspace></mspace><mn>12</mn><mspace></mspace><mi>m</mi><mi>i</mi><mi>n</mi></mrow><mo>)</mo></mrow></math></span>. Additionally, we noted excellent compatibility between the PeL-MPs and the glass host, since no chemical interaction was found, as verified by optical microscopy, energy dispersive X-ray (EDX) mapping analysis and cathodoluminescence (CL) in SEM. Furthermore, the afterglow intensity of the particles was maintained after the preparation of materials.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102222"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translucent persistent luminescence glass matrix composite obtained by pressureless viscous sintering\",\"authors\":\"Roger Gomes Fernandes , Elaine de Andrade Mattos , Victor Murilo Poltronieri da Silva , David Van der Heggen , Philippe F. Smet , Danilo Manzani , Verônica de Carvalho Teixeira , Lucas Carvalho Veloso Rodrigues\",\"doi\":\"10.1016/j.mtla.2024.102222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Translucent persistent luminescence glass matrix composites (PeL-GMCs) were successfully obtained for the first time using a pressureless viscous sintering method with silicate glass as the host material. Initially, persistent luminescence microparticles (PeL-MPs) of SrAl<sub>2</sub>O<sub>4</sub>: Eu<sup>2+</sup>; Dy<sup>3+</sup> were prepared by microwave-assisted synthesis under a reducing atmosphere. To obtain persistent luminescent glass matrix composites, 1 wt. % of these particles were mixed with soda-lime-silicate glass beads and pressed into pellets. Subsequently, the disk-shaped samples were heat-treated through pressureless viscous sintering. Despite some material porosity, the PeL-GMCs exhibited translucency and prolonged persistent luminescence <span><math><mrow><mo>(</mo><mrow><mo>∼</mo><mspace></mspace><mn>12</mn><mspace></mspace><mi>m</mi><mi>i</mi><mi>n</mi></mrow><mo>)</mo></mrow></math></span>. Additionally, we noted excellent compatibility between the PeL-MPs and the glass host, since no chemical interaction was found, as verified by optical microscopy, energy dispersive X-ray (EDX) mapping analysis and cathodoluminescence (CL) in SEM. Furthermore, the afterglow intensity of the particles was maintained after the preparation of materials.</p></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"38 \",\"pages\":\"Article 102222\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924002199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Translucent persistent luminescence glass matrix composites (PeL-GMCs) were successfully obtained for the first time using a pressureless viscous sintering method with silicate glass as the host material. Initially, persistent luminescence microparticles (PeL-MPs) of SrAl2O4: Eu2+; Dy3+ were prepared by microwave-assisted synthesis under a reducing atmosphere. To obtain persistent luminescent glass matrix composites, 1 wt. % of these particles were mixed with soda-lime-silicate glass beads and pressed into pellets. Subsequently, the disk-shaped samples were heat-treated through pressureless viscous sintering. Despite some material porosity, the PeL-GMCs exhibited translucency and prolonged persistent luminescence . Additionally, we noted excellent compatibility between the PeL-MPs and the glass host, since no chemical interaction was found, as verified by optical microscopy, energy dispersive X-ray (EDX) mapping analysis and cathodoluminescence (CL) in SEM. Furthermore, the afterglow intensity of the particles was maintained after the preparation of materials.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).