{"title":"泄漏中子对月球地下水丰度和深度分布的敏感性","authors":"Hiroki Kusano , Hiroshi Nagaoka , Teruaki Enoto , Naoyuki Yamashita , Yuzuru Karouji , Takeshi Hoshino , Munetaka Ueno , Makoto Hareyama","doi":"10.1016/j.pss.2024.105968","DOIUrl":null,"url":null,"abstract":"<div><p>Water on the Moon has received increasing attention due to its importance in planetary science and the utilization of space resources. Future lunar rover missions are poised to conduct explorations, specifically focusing on locating water. Neutron spectroscopy is a powerful technique for estimating subsurface water content. In this study, lunar surface neutrons induced by galactic cosmic rays were investigated through Monte Carlo simulation. This effort aims to yield insights pertinent to in-situ water search explorations utilizing neutron spectrometers. The sensitivity of the leakage neutron intensity to the depth profile of subsurface water within the top 1.5 m soil was obtained via calculations based on a lunar surface model, featuring a localized concentration of water-rich soil. Computational outcomes underscore the potential of neutron observations to provide data on the depth profile of subsurface water under specific circumstances. Notably, in scenarios where a thin and shallow water-rich layer, approximately <span><math><mo>≲</mo></math></span>20 cm thick and located <span><math><mo>≲</mo></math></span>50 cm deep, is assumable within lunar soil of density 1.6 g/cm<sup>3</sup>, a combination of thermal, epithermal, and fast neutron measurements enables concurrent estimation of water abundance and depth. To accurately understand the subsurface water abundance and depth across exploration areas along the rover’s path, a comprehensive assessment of leakage neutrons in a wide energy range becomes indispensable.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105968"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity of leakage neutrons to the abundance and depth distribution of lunar subsurface water\",\"authors\":\"Hiroki Kusano , Hiroshi Nagaoka , Teruaki Enoto , Naoyuki Yamashita , Yuzuru Karouji , Takeshi Hoshino , Munetaka Ueno , Makoto Hareyama\",\"doi\":\"10.1016/j.pss.2024.105968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water on the Moon has received increasing attention due to its importance in planetary science and the utilization of space resources. Future lunar rover missions are poised to conduct explorations, specifically focusing on locating water. Neutron spectroscopy is a powerful technique for estimating subsurface water content. In this study, lunar surface neutrons induced by galactic cosmic rays were investigated through Monte Carlo simulation. This effort aims to yield insights pertinent to in-situ water search explorations utilizing neutron spectrometers. The sensitivity of the leakage neutron intensity to the depth profile of subsurface water within the top 1.5 m soil was obtained via calculations based on a lunar surface model, featuring a localized concentration of water-rich soil. Computational outcomes underscore the potential of neutron observations to provide data on the depth profile of subsurface water under specific circumstances. Notably, in scenarios where a thin and shallow water-rich layer, approximately <span><math><mo>≲</mo></math></span>20 cm thick and located <span><math><mo>≲</mo></math></span>50 cm deep, is assumable within lunar soil of density 1.6 g/cm<sup>3</sup>, a combination of thermal, epithermal, and fast neutron measurements enables concurrent estimation of water abundance and depth. To accurately understand the subsurface water abundance and depth across exploration areas along the rover’s path, a comprehensive assessment of leakage neutrons in a wide energy range becomes indispensable.</p></div>\",\"PeriodicalId\":20054,\"journal\":{\"name\":\"Planetary and Space Science\",\"volume\":\"251 \",\"pages\":\"Article 105968\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planetary and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032063324001326\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324001326","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Sensitivity of leakage neutrons to the abundance and depth distribution of lunar subsurface water
Water on the Moon has received increasing attention due to its importance in planetary science and the utilization of space resources. Future lunar rover missions are poised to conduct explorations, specifically focusing on locating water. Neutron spectroscopy is a powerful technique for estimating subsurface water content. In this study, lunar surface neutrons induced by galactic cosmic rays were investigated through Monte Carlo simulation. This effort aims to yield insights pertinent to in-situ water search explorations utilizing neutron spectrometers. The sensitivity of the leakage neutron intensity to the depth profile of subsurface water within the top 1.5 m soil was obtained via calculations based on a lunar surface model, featuring a localized concentration of water-rich soil. Computational outcomes underscore the potential of neutron observations to provide data on the depth profile of subsurface water under specific circumstances. Notably, in scenarios where a thin and shallow water-rich layer, approximately 20 cm thick and located 50 cm deep, is assumable within lunar soil of density 1.6 g/cm3, a combination of thermal, epithermal, and fast neutron measurements enables concurrent estimation of water abundance and depth. To accurately understand the subsurface water abundance and depth across exploration areas along the rover’s path, a comprehensive assessment of leakage neutrons in a wide energy range becomes indispensable.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research