{"title":"利用纺织工业废料作为吸附剂去除纺织染料,建立循环经济","authors":"","doi":"10.1016/j.envres.2024.119987","DOIUrl":null,"url":null,"abstract":"<div><p>This study explored the use of waste from the textile industry (silkworm byproducts) as a promising raw feedstock for the production of carbon-based adsorbents (biochar). The silk excreta biochar generated at 600 and 700 °C (referred to as SEB-600 and SEB-700, respectively) were evaluated in terms of their efficacy in adsorbing cationic (methylene blue) and anionic (Congo red) textile dyes. Although the functional groups on the surfaces of SEB-600 and SEB-700 were not significantly different, the specific surface area of SEB-700 was greater than that of SEB-600. The dye adsorption capacity of SEB-700 was higher than that of SEB-600. The adsorption of methylene blue and Congo red on SEB-700 followed Freundlich isotherms (R<sup>2</sup> ≥ 0.963) and pseudo-second-order kinetics (R<sup>2</sup> = 0.999), indicating chemisorption with multilayer characteristics. The mechanism for the adsorption of methylene blue on SEB-700 may involve interactions with the negatively charged functional groups on the surface and the mesopores of SEB-700. For the adsorption of Congo red, the mesopores in the biochar and the electrostatic interaction between biochar (positively charged because of the dye solution pH < pH<sub>zpc</sub>) and the anionic dye could affect adsorption. The maximum adsorption capacities of SEB-700 for methylene blue and Congo red were determined to be 168.23 and 185.32 mg g<sup>−1</sup>, respectively. Utilising the waste generated from the textile industry to remove pollutants will build a sustainable loop in the industry by minimising waste generation and pollutant emissions.</p></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of circular economy by utilising textile industry waste as an adsorbent for textile dye removal\",\"authors\":\"\",\"doi\":\"10.1016/j.envres.2024.119987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explored the use of waste from the textile industry (silkworm byproducts) as a promising raw feedstock for the production of carbon-based adsorbents (biochar). The silk excreta biochar generated at 600 and 700 °C (referred to as SEB-600 and SEB-700, respectively) were evaluated in terms of their efficacy in adsorbing cationic (methylene blue) and anionic (Congo red) textile dyes. Although the functional groups on the surfaces of SEB-600 and SEB-700 were not significantly different, the specific surface area of SEB-700 was greater than that of SEB-600. The dye adsorption capacity of SEB-700 was higher than that of SEB-600. The adsorption of methylene blue and Congo red on SEB-700 followed Freundlich isotherms (R<sup>2</sup> ≥ 0.963) and pseudo-second-order kinetics (R<sup>2</sup> = 0.999), indicating chemisorption with multilayer characteristics. The mechanism for the adsorption of methylene blue on SEB-700 may involve interactions with the negatively charged functional groups on the surface and the mesopores of SEB-700. For the adsorption of Congo red, the mesopores in the biochar and the electrostatic interaction between biochar (positively charged because of the dye solution pH < pH<sub>zpc</sub>) and the anionic dye could affect adsorption. The maximum adsorption capacities of SEB-700 for methylene blue and Congo red were determined to be 168.23 and 185.32 mg g<sup>−1</sup>, respectively. Utilising the waste generated from the textile industry to remove pollutants will build a sustainable loop in the industry by minimising waste generation and pollutant emissions.</p></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124018929\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124018929","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Establishment of circular economy by utilising textile industry waste as an adsorbent for textile dye removal
This study explored the use of waste from the textile industry (silkworm byproducts) as a promising raw feedstock for the production of carbon-based adsorbents (biochar). The silk excreta biochar generated at 600 and 700 °C (referred to as SEB-600 and SEB-700, respectively) were evaluated in terms of their efficacy in adsorbing cationic (methylene blue) and anionic (Congo red) textile dyes. Although the functional groups on the surfaces of SEB-600 and SEB-700 were not significantly different, the specific surface area of SEB-700 was greater than that of SEB-600. The dye adsorption capacity of SEB-700 was higher than that of SEB-600. The adsorption of methylene blue and Congo red on SEB-700 followed Freundlich isotherms (R2 ≥ 0.963) and pseudo-second-order kinetics (R2 = 0.999), indicating chemisorption with multilayer characteristics. The mechanism for the adsorption of methylene blue on SEB-700 may involve interactions with the negatively charged functional groups on the surface and the mesopores of SEB-700. For the adsorption of Congo red, the mesopores in the biochar and the electrostatic interaction between biochar (positively charged because of the dye solution pH < pHzpc) and the anionic dye could affect adsorption. The maximum adsorption capacities of SEB-700 for methylene blue and Congo red were determined to be 168.23 and 185.32 mg g−1, respectively. Utilising the waste generated from the textile industry to remove pollutants will build a sustainable loop in the industry by minimising waste generation and pollutant emissions.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.