{"title":"提高数据速率的 MIMO LoRa 相干检测","authors":"Luca Rugini;Keya Sardar;Giuseppe Baruffa","doi":"10.1109/OJCOMS.2024.3454454","DOIUrl":null,"url":null,"abstract":"This paper proposes a Long Range (LoRa) chirp transmission scheme with multiple transmit and receive antennas. The main goal is to increase the data rate of LoRa using multiple-input multipleoutput (MIMO) spatial multiplexing. Several coherent detectors are proposed and compared in terms of performance, assuming a channel with flat Rayleigh fading and additive white Gaussian noise. By leveraging on a convenient matrix-vector model, we show that the maximum-likelihood (ML) detector can be obtained with low complexity, when the number of transmit antennas is two or three. When the number of transmit antennas is four or five, we propose a transmission scheme that permits a near- ML detection with reduced complexity. We also propose linear and widely linear detectors that exploit the signal sparsity in the chirp domain. Simulation results confirm the effectiveness of the proposed MIMO LoRa transmission schemes and detectors. Simulated results also include the effect of imperfect synchronization and channel estimation errors on the proposed coherent detection.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10664549","citationCount":"0","resultStr":"{\"title\":\"Coherent Detection of MIMO LoRa With Increased Data Rate\",\"authors\":\"Luca Rugini;Keya Sardar;Giuseppe Baruffa\",\"doi\":\"10.1109/OJCOMS.2024.3454454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Long Range (LoRa) chirp transmission scheme with multiple transmit and receive antennas. The main goal is to increase the data rate of LoRa using multiple-input multipleoutput (MIMO) spatial multiplexing. Several coherent detectors are proposed and compared in terms of performance, assuming a channel with flat Rayleigh fading and additive white Gaussian noise. By leveraging on a convenient matrix-vector model, we show that the maximum-likelihood (ML) detector can be obtained with low complexity, when the number of transmit antennas is two or three. When the number of transmit antennas is four or five, we propose a transmission scheme that permits a near- ML detection with reduced complexity. We also propose linear and widely linear detectors that exploit the signal sparsity in the chirp domain. Simulation results confirm the effectiveness of the proposed MIMO LoRa transmission schemes and detectors. Simulated results also include the effect of imperfect synchronization and channel estimation errors on the proposed coherent detection.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10664549\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10664549/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10664549/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种具有多个发射和接收天线的长距离(LoRa)啁啾传输方案。其主要目标是利用多输入多输出(MIMO)空间复用技术提高 LoRa 的数据传输速率。假设信道具有平坦的瑞利衰落和加性白高斯噪声,提出了几种相干检测器并对其性能进行了比较。通过利用方便的矩阵-矢量模型,我们证明了当发射天线数量为两个或三个时,最大似然(ML)检测器的复杂度较低。当发射天线数量为四或五根时,我们提出了一种传输方案,允许以较低的复杂度实现接近 ML 的检测。我们还提出了利用啁啾域信号稀疏性的线性和广义线性检测器。仿真结果证实了所提出的 MIMO LoRa 传输方案和检测器的有效性。仿真结果还包括不完美同步和信道估计误差对拟议相干检测的影响。
Coherent Detection of MIMO LoRa With Increased Data Rate
This paper proposes a Long Range (LoRa) chirp transmission scheme with multiple transmit and receive antennas. The main goal is to increase the data rate of LoRa using multiple-input multipleoutput (MIMO) spatial multiplexing. Several coherent detectors are proposed and compared in terms of performance, assuming a channel with flat Rayleigh fading and additive white Gaussian noise. By leveraging on a convenient matrix-vector model, we show that the maximum-likelihood (ML) detector can be obtained with low complexity, when the number of transmit antennas is two or three. When the number of transmit antennas is four or five, we propose a transmission scheme that permits a near- ML detection with reduced complexity. We also propose linear and widely linear detectors that exploit the signal sparsity in the chirp domain. Simulation results confirm the effectiveness of the proposed MIMO LoRa transmission schemes and detectors. Simulated results also include the effect of imperfect synchronization and channel estimation errors on the proposed coherent detection.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.