{"title":"源自 -Fe2O3/g-C3N4/Fe-MOF 的三元三维/二维/三维直接双 Z 型 MOF-on-MOF 光催化剂,用于促进阳光驱动的甲硝唑去除:共存离子、机理认识和水基质的影响","authors":"Anindita Bhuyan, Md. Ahmaruzzaman","doi":"10.1039/d4en00610k","DOIUrl":null,"url":null,"abstract":"A direct solid ternary dual Z-scheme photocatalyst, 3D/2D/3D -Fe2O3/g-C3N4/Fe-MOF (FCM), was fabricated for efficient removal of metronidazole (MTZ) under sunlight irradiation. About 98.5 % of 25 mg/L MTZ was effectively degraded with a catalyst dosage of 20 mg/50mL under 90 min of sunlight irradiation. Moreover, a total organic carbon (TOC) removal of 78.5 % was achieved within the same duration under optimal conditions. The simultaneous transfer of photogenerated electron-hole pairs in the two Z-scheme pathways described here can significantly accelerate the charge separation and enhance ROS production. The effect of catalyst dose, initial MTZ concentration, inorganic cations (Na+, Mg2+, Ca2+, and Al3+), inorganic anions (Cl-, CO32-, NO3-, and SO42-), organic compounds (SDS, urea, HA, and acetone), and different water matrices on the degradation of MTZ by FCM was analyzed systematically. Furthermore, comprehending the spatial separation and transfer of photogenerated charge carriers, as well as the formation of ROS at the heterojunction interface, is critical for understanding photocatalytic degradation mechanisms. Consequently, a plausible MTZ breakdown route and charge transfer pathway were established based on the radical scavenging experiments, ESR and LCMS analysis. A high degradation efficiency of the dual Z-scheme MOF-on-MOF-derived 3D/2D/3D -Fe2O3/g-C3N4/Fe-MOF photocatalyst under all simulated experiments and different water matrices highlights its excellent photoactivity and establishes its potential use in visible-light-driven photocatalytic application in wastewater remediation.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ternary 3D/2D/3D direct dual Z-scheme MOF-on-MOF-derived -Fe2O3/g-C3N4/Fe-MOF photocatalyst for boosted sunlight-driven removal of metronidazole: Effect of co-existing ions, mechanistic insights, and water matrices\",\"authors\":\"Anindita Bhuyan, Md. Ahmaruzzaman\",\"doi\":\"10.1039/d4en00610k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A direct solid ternary dual Z-scheme photocatalyst, 3D/2D/3D -Fe2O3/g-C3N4/Fe-MOF (FCM), was fabricated for efficient removal of metronidazole (MTZ) under sunlight irradiation. About 98.5 % of 25 mg/L MTZ was effectively degraded with a catalyst dosage of 20 mg/50mL under 90 min of sunlight irradiation. Moreover, a total organic carbon (TOC) removal of 78.5 % was achieved within the same duration under optimal conditions. The simultaneous transfer of photogenerated electron-hole pairs in the two Z-scheme pathways described here can significantly accelerate the charge separation and enhance ROS production. The effect of catalyst dose, initial MTZ concentration, inorganic cations (Na+, Mg2+, Ca2+, and Al3+), inorganic anions (Cl-, CO32-, NO3-, and SO42-), organic compounds (SDS, urea, HA, and acetone), and different water matrices on the degradation of MTZ by FCM was analyzed systematically. Furthermore, comprehending the spatial separation and transfer of photogenerated charge carriers, as well as the formation of ROS at the heterojunction interface, is critical for understanding photocatalytic degradation mechanisms. Consequently, a plausible MTZ breakdown route and charge transfer pathway were established based on the radical scavenging experiments, ESR and LCMS analysis. A high degradation efficiency of the dual Z-scheme MOF-on-MOF-derived 3D/2D/3D -Fe2O3/g-C3N4/Fe-MOF photocatalyst under all simulated experiments and different water matrices highlights its excellent photoactivity and establishes its potential use in visible-light-driven photocatalytic application in wastewater remediation.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en00610k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00610k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ternary 3D/2D/3D direct dual Z-scheme MOF-on-MOF-derived -Fe2O3/g-C3N4/Fe-MOF photocatalyst for boosted sunlight-driven removal of metronidazole: Effect of co-existing ions, mechanistic insights, and water matrices
A direct solid ternary dual Z-scheme photocatalyst, 3D/2D/3D -Fe2O3/g-C3N4/Fe-MOF (FCM), was fabricated for efficient removal of metronidazole (MTZ) under sunlight irradiation. About 98.5 % of 25 mg/L MTZ was effectively degraded with a catalyst dosage of 20 mg/50mL under 90 min of sunlight irradiation. Moreover, a total organic carbon (TOC) removal of 78.5 % was achieved within the same duration under optimal conditions. The simultaneous transfer of photogenerated electron-hole pairs in the two Z-scheme pathways described here can significantly accelerate the charge separation and enhance ROS production. The effect of catalyst dose, initial MTZ concentration, inorganic cations (Na+, Mg2+, Ca2+, and Al3+), inorganic anions (Cl-, CO32-, NO3-, and SO42-), organic compounds (SDS, urea, HA, and acetone), and different water matrices on the degradation of MTZ by FCM was analyzed systematically. Furthermore, comprehending the spatial separation and transfer of photogenerated charge carriers, as well as the formation of ROS at the heterojunction interface, is critical for understanding photocatalytic degradation mechanisms. Consequently, a plausible MTZ breakdown route and charge transfer pathway were established based on the radical scavenging experiments, ESR and LCMS analysis. A high degradation efficiency of the dual Z-scheme MOF-on-MOF-derived 3D/2D/3D -Fe2O3/g-C3N4/Fe-MOF photocatalyst under all simulated experiments and different water matrices highlights its excellent photoactivity and establishes its potential use in visible-light-driven photocatalytic application in wastewater remediation.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.