湿热响应型形状记忆聚合物的热力学一致构成模型

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION Smart Materials and Structures Pub Date : 2024-08-29 DOI:10.1088/1361-665x/ad70e3
Jianping Gu, Changchun Wang, Xiaopeng Zhang, Hao Zeng, Mengqi Wan, Huiyu Sun
{"title":"湿热响应型形状记忆聚合物的热力学一致构成模型","authors":"Jianping Gu, Changchun Wang, Xiaopeng Zhang, Hao Zeng, Mengqi Wan, Huiyu Sun","doi":"10.1088/1361-665x/ad70e3","DOIUrl":null,"url":null,"abstract":"Taking into account that shape memory polymer (SMP)-based devices are often subject to multiple environmental conditions during application, it is difficult to accurately predict their shape memory effect (SME). Thus, constitutive modeling for SMPs in multi-field environments is of great importance. However, most of the models available are limited to describing the temperature-driven SME and do not refer to multi-field conditions. In this paper, a constitutive model for SMPs in hygrothermal environments is developed under a consistent thermodynamic framework. The derivation is based on an additive decomposition of the Helmholtz free energy density and satisfying the first law and second law of thermodynamics. In this paper, the absorbed moisture is categorized into free and bound phases and it is considered that they have different effects on the material properties. Accordingly, it is the first time to study the variation of configurational entropy with different phases in the polymer–moisture system during the moisture diffusion process. For the first time, the validity of the constitutive model proposed in this paper can be confirmed by systematically comparing the modeling results and experimental data of various types of hygrothermal-induced shape memory cycles.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamically-consistent constitutive modeling of moisture- and thermo-responsive shape memory polymers\",\"authors\":\"Jianping Gu, Changchun Wang, Xiaopeng Zhang, Hao Zeng, Mengqi Wan, Huiyu Sun\",\"doi\":\"10.1088/1361-665x/ad70e3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking into account that shape memory polymer (SMP)-based devices are often subject to multiple environmental conditions during application, it is difficult to accurately predict their shape memory effect (SME). Thus, constitutive modeling for SMPs in multi-field environments is of great importance. However, most of the models available are limited to describing the temperature-driven SME and do not refer to multi-field conditions. In this paper, a constitutive model for SMPs in hygrothermal environments is developed under a consistent thermodynamic framework. The derivation is based on an additive decomposition of the Helmholtz free energy density and satisfying the first law and second law of thermodynamics. In this paper, the absorbed moisture is categorized into free and bound phases and it is considered that they have different effects on the material properties. Accordingly, it is the first time to study the variation of configurational entropy with different phases in the polymer–moisture system during the moisture diffusion process. For the first time, the validity of the constitutive model proposed in this paper can be confirmed by systematically comparing the modeling results and experimental data of various types of hygrothermal-induced shape memory cycles.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad70e3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad70e3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

考虑到基于形状记忆聚合物(SMP)的设备在应用过程中通常会受到多种环境条件的影响,因此很难准确预测其形状记忆效应(SME)。因此,建立多场环境下的 SMP 构成模型非常重要。然而,现有的大多数模型仅限于描述温度驱动的 SME,并未涉及多场条件。本文在一个一致的热力学框架下,为湿热环境中的 SME 建立了一个构造模型。该模型的推导基于亥姆霍兹自由能密度的加法分解,并满足热力学第一定律和第二定律。本文将吸收的水分分为自由相和结合相,并认为它们对材料特性有不同的影响。因此,本文首次研究了聚合物-水分体系在水分扩散过程中构型熵随不同相的变化。通过系统比较各种类型湿热诱导形状记忆循环的建模结果和实验数据,首次证实了本文提出的构成模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamically-consistent constitutive modeling of moisture- and thermo-responsive shape memory polymers
Taking into account that shape memory polymer (SMP)-based devices are often subject to multiple environmental conditions during application, it is difficult to accurately predict their shape memory effect (SME). Thus, constitutive modeling for SMPs in multi-field environments is of great importance. However, most of the models available are limited to describing the temperature-driven SME and do not refer to multi-field conditions. In this paper, a constitutive model for SMPs in hygrothermal environments is developed under a consistent thermodynamic framework. The derivation is based on an additive decomposition of the Helmholtz free energy density and satisfying the first law and second law of thermodynamics. In this paper, the absorbed moisture is categorized into free and bound phases and it is considered that they have different effects on the material properties. Accordingly, it is the first time to study the variation of configurational entropy with different phases in the polymer–moisture system during the moisture diffusion process. For the first time, the validity of the constitutive model proposed in this paper can be confirmed by systematically comparing the modeling results and experimental data of various types of hygrothermal-induced shape memory cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
期刊最新文献
Nonlinear vibration of a loaded string in energy harvesting Three-dimensional free-standing heterostructures out of MoS2 and rGO with infused PDMS towards electromechanical pressure sensing An IGBT coupling structure with a smart service life reliability predictor using active learning Shape optimization of a non-uniform piezoelectric bending beam for human knee energy harvester A frequency steerable electromagnetic acoustic transducer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1