Yinlong Zhu, Tian Wang, Weizhuang Gong, Kai Feng, Xu Wang, Shuang Xi
{"title":"气动网络结构软机械臂的设计与运动分析","authors":"Yinlong Zhu, Tian Wang, Weizhuang Gong, Kai Feng, Xu Wang, Shuang Xi","doi":"10.1088/1361-665x/ad7002","DOIUrl":null,"url":null,"abstract":"Soft robotic arms have been widely explored in recent years because of their excellent flexibility and infinite degrees of freedom which distinguishes them form traditional rigid robots. This paper focuses on the design, fabrication and kinematic analysis of a new modular soft robotic arm featuring multiple segments, each one with three degrees of freedom. In contrast to most research, this paper utilizes soft pneu-net structure instead of fiber-reinforced structure, thereby preventing large local strains due to membrane pressurized against a fiber reinforcement. We employed finite element method and orthogonal experiment were to ascertain the optimal structural parameters. Furthermore, we present the kinematic model of the soft arm by the parameterization of the Denavit–Hartenberg convention under the basis of constant curvature assumption. Finally, the experimental evaluation of the soft robotic arm including bending angle, elongation, deflection and flexibility test were carried out. The experimental data, particularly concerning the bending angle and spatial position of both single modular and two-modular soft arm agree well with the finite element method simulation. Additionally, we performed both grasping and obstacle-avoidance grasping tests for dual modular soft robotic. The results demonstrate that the soft robotic arm exhibits superior performance and highlights its potential for various applications.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and motion analysis of soft robotic arm with pneumatic-network structure\",\"authors\":\"Yinlong Zhu, Tian Wang, Weizhuang Gong, Kai Feng, Xu Wang, Shuang Xi\",\"doi\":\"10.1088/1361-665x/ad7002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft robotic arms have been widely explored in recent years because of their excellent flexibility and infinite degrees of freedom which distinguishes them form traditional rigid robots. This paper focuses on the design, fabrication and kinematic analysis of a new modular soft robotic arm featuring multiple segments, each one with three degrees of freedom. In contrast to most research, this paper utilizes soft pneu-net structure instead of fiber-reinforced structure, thereby preventing large local strains due to membrane pressurized against a fiber reinforcement. We employed finite element method and orthogonal experiment were to ascertain the optimal structural parameters. Furthermore, we present the kinematic model of the soft arm by the parameterization of the Denavit–Hartenberg convention under the basis of constant curvature assumption. Finally, the experimental evaluation of the soft robotic arm including bending angle, elongation, deflection and flexibility test were carried out. The experimental data, particularly concerning the bending angle and spatial position of both single modular and two-modular soft arm agree well with the finite element method simulation. Additionally, we performed both grasping and obstacle-avoidance grasping tests for dual modular soft robotic. The results demonstrate that the soft robotic arm exhibits superior performance and highlights its potential for various applications.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad7002\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad7002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Design and motion analysis of soft robotic arm with pneumatic-network structure
Soft robotic arms have been widely explored in recent years because of their excellent flexibility and infinite degrees of freedom which distinguishes them form traditional rigid robots. This paper focuses on the design, fabrication and kinematic analysis of a new modular soft robotic arm featuring multiple segments, each one with three degrees of freedom. In contrast to most research, this paper utilizes soft pneu-net structure instead of fiber-reinforced structure, thereby preventing large local strains due to membrane pressurized against a fiber reinforcement. We employed finite element method and orthogonal experiment were to ascertain the optimal structural parameters. Furthermore, we present the kinematic model of the soft arm by the parameterization of the Denavit–Hartenberg convention under the basis of constant curvature assumption. Finally, the experimental evaluation of the soft robotic arm including bending angle, elongation, deflection and flexibility test were carried out. The experimental data, particularly concerning the bending angle and spatial position of both single modular and two-modular soft arm agree well with the finite element method simulation. Additionally, we performed both grasping and obstacle-avoidance grasping tests for dual modular soft robotic. The results demonstrate that the soft robotic arm exhibits superior performance and highlights its potential for various applications.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.