基于金属橡胶和压电致动器的主被动一体化隔振器研究

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION Smart Materials and Structures Pub Date : 2024-08-27 DOI:10.1088/1361-665x/ad6ed0
Jiaxi Jin, Xuan Sun, Yuechen Liu, Zhaobo Chen
{"title":"基于金属橡胶和压电致动器的主被动一体化隔振器研究","authors":"Jiaxi Jin, Xuan Sun, Yuechen Liu, Zhaobo Chen","doi":"10.1088/1361-665x/ad6ed0","DOIUrl":null,"url":null,"abstract":"The paper introduces a novel active-passive integrated vibration isolator based on metal rubber and piezoelectric actuator, along with an adaptive active vibration control strategy. The active control strategy employs the adaptive dynamic step filtered-x normalized least mean squares algorithm, allowing the step size to adaptively adjust with the error. The secondary control path of the algorithm is modeled using the enhanced rate-dependent Prandtl–Ishlinskii model and the auto-regressive with extra inputs model. The active-passive integrated vibration isolator achieves broadband vibration isolation from 10 to 200 Hz. Compared to passive isolation, the transmissibility decreases from 0.99 to 0.056 at 10 Hz, from 3.02 to 0.068 at the resonance frequency, and from 0.057 to 0.046 at 200 Hz. This study provides a theoretical and experimental foundation for the design of a novel, broadband, and efficient active-passive integrated vibration isolator structure and active control method.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"14 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on active-passive integrated vibration isolator based on metal rubber and piezoelectric actuator\",\"authors\":\"Jiaxi Jin, Xuan Sun, Yuechen Liu, Zhaobo Chen\",\"doi\":\"10.1088/1361-665x/ad6ed0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a novel active-passive integrated vibration isolator based on metal rubber and piezoelectric actuator, along with an adaptive active vibration control strategy. The active control strategy employs the adaptive dynamic step filtered-x normalized least mean squares algorithm, allowing the step size to adaptively adjust with the error. The secondary control path of the algorithm is modeled using the enhanced rate-dependent Prandtl–Ishlinskii model and the auto-regressive with extra inputs model. The active-passive integrated vibration isolator achieves broadband vibration isolation from 10 to 200 Hz. Compared to passive isolation, the transmissibility decreases from 0.99 to 0.056 at 10 Hz, from 3.02 to 0.068 at the resonance frequency, and from 0.057 to 0.046 at 200 Hz. This study provides a theoretical and experimental foundation for the design of a novel, broadband, and efficient active-passive integrated vibration isolator structure and active control method.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad6ed0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad6ed0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于金属橡胶和压电致动器的新型主被动一体化隔振器,以及一种自适应主动振动控制策略。该主动控制策略采用自适应动态步长滤波-x 归一化最小均方差算法,允许步长随误差自适应调节。该算法的二级控制路径采用了增强型速率相关普兰德-伊什林斯基模型和带有额外输入的自动回归模型。主动-被动一体化隔振器实现了 10 至 200 Hz 的宽带隔振。与被动隔振相比,传递率在 10 Hz 时从 0.99 降至 0.056,在共振频率时从 3.02 降至 0.068,在 200 Hz 时从 0.057 降至 0.046。这项研究为设计新型、宽带、高效的主被动一体化隔振器结构和主动控制方法提供了理论和实验基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on active-passive integrated vibration isolator based on metal rubber and piezoelectric actuator
The paper introduces a novel active-passive integrated vibration isolator based on metal rubber and piezoelectric actuator, along with an adaptive active vibration control strategy. The active control strategy employs the adaptive dynamic step filtered-x normalized least mean squares algorithm, allowing the step size to adaptively adjust with the error. The secondary control path of the algorithm is modeled using the enhanced rate-dependent Prandtl–Ishlinskii model and the auto-regressive with extra inputs model. The active-passive integrated vibration isolator achieves broadband vibration isolation from 10 to 200 Hz. Compared to passive isolation, the transmissibility decreases from 0.99 to 0.056 at 10 Hz, from 3.02 to 0.068 at the resonance frequency, and from 0.057 to 0.046 at 200 Hz. This study provides a theoretical and experimental foundation for the design of a novel, broadband, and efficient active-passive integrated vibration isolator structure and active control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
期刊最新文献
Nonlinear vibration of a loaded string in energy harvesting Three-dimensional free-standing heterostructures out of MoS2 and rGO with infused PDMS towards electromechanical pressure sensing An IGBT coupling structure with a smart service life reliability predictor using active learning Shape optimization of a non-uniform piezoelectric bending beam for human knee energy harvester A frequency steerable electromagnetic acoustic transducer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1