利用反粘弹性模型检索波弗特海的海冰抗压强度

IF 1.5 4区 地球科学 Q3 ECOLOGY Polar Science Pub Date : 2024-09-01 DOI:10.1016/j.polar.2024.101107
G. Panteleev , M. Yaremchuk , O. Francis
{"title":"利用反粘弹性模型检索波弗特海的海冰抗压强度","authors":"G. Panteleev ,&nbsp;M. Yaremchuk ,&nbsp;O. Francis","doi":"10.1016/j.polar.2024.101107","DOIUrl":null,"url":null,"abstract":"<div><p>We apply a simplified 2d Visco-Plastic (VP) sea ice model with a spatially variable representation of the sea ice rheological parameters for retrieving maximum compressive sea ice strength from satellite and <em>in situ</em> observations. A set of Observing System Simulation Experiments (OSSEs) demonstrates feasibility of optimizing rheological parameter of the VP sea ice model through the variational data assimilation approach during the periods of strong sea ice convergence if accurate sea ice observations are available. Following this strategy, the developed variational data assimilation VP model was applied to the sea ice velocity (<span><span>https://nsidc.org/data/nsidc-0116/versions/4</span><svg><path></path></svg></span>), sea ice concentration (<span><span>https://nsidc.org/data/</span><svg><path></path></svg></span>) and CryoSat-2 sea ice thickness observations collected in the vicinity of three moorings in the Beaufort Sea during periods of intensive sea ice convergence. Ice velocities from moorings and atmospheric wind speed (NCEP-NCAR) were used as well. Our results show that conventional maximum compressive sea ice strength (Hibler, 1979) may depend on sea ice thickness or other parameters partly controlled by the sea ice thickness, which is driven by the seasonal cycle.</p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrieving compressive sea ice strength in the Beaufort Sea using the inverse visco-plastic model\",\"authors\":\"G. Panteleev ,&nbsp;M. Yaremchuk ,&nbsp;O. Francis\",\"doi\":\"10.1016/j.polar.2024.101107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We apply a simplified 2d Visco-Plastic (VP) sea ice model with a spatially variable representation of the sea ice rheological parameters for retrieving maximum compressive sea ice strength from satellite and <em>in situ</em> observations. A set of Observing System Simulation Experiments (OSSEs) demonstrates feasibility of optimizing rheological parameter of the VP sea ice model through the variational data assimilation approach during the periods of strong sea ice convergence if accurate sea ice observations are available. Following this strategy, the developed variational data assimilation VP model was applied to the sea ice velocity (<span><span>https://nsidc.org/data/nsidc-0116/versions/4</span><svg><path></path></svg></span>), sea ice concentration (<span><span>https://nsidc.org/data/</span><svg><path></path></svg></span>) and CryoSat-2 sea ice thickness observations collected in the vicinity of three moorings in the Beaufort Sea during periods of intensive sea ice convergence. Ice velocities from moorings and atmospheric wind speed (NCEP-NCAR) were used as well. Our results show that conventional maximum compressive sea ice strength (Hibler, 1979) may depend on sea ice thickness or other parameters partly controlled by the sea ice thickness, which is driven by the seasonal cycle.</p></div>\",\"PeriodicalId\":20316,\"journal\":{\"name\":\"Polar Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873965224000902\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965224000902","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们应用简化的二维粘弹性(VP)海冰模型,通过海冰流变参数的空间可变表示,从卫星和观测数据中获取最大压缩海冰强度。一组观测系统模拟实验(OSSEs)证明了在有精确海冰观测数据的情况下,通过变分数据同化方法在强海冰会聚期优化 VP 海冰模型流变参数的可行性。按照这一策略,将开发的变分数据同化 VP 模型应用于波弗特海在海冰密集辐合期间在三个锚系设备附近收集的海冰速度()、海冰浓度()和 CryoSat-2 海冰厚度观测数据。同时还使用了来自锚系设备的冰速和大气风速(NCEP-NCAR)。我们的结果表明,传统的海冰最大抗压强度(Hibler,1979 年)可能取决于海冰厚度或部分受海冰厚度控制的其他参数,而海冰厚度则受季节周期驱动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retrieving compressive sea ice strength in the Beaufort Sea using the inverse visco-plastic model

We apply a simplified 2d Visco-Plastic (VP) sea ice model with a spatially variable representation of the sea ice rheological parameters for retrieving maximum compressive sea ice strength from satellite and in situ observations. A set of Observing System Simulation Experiments (OSSEs) demonstrates feasibility of optimizing rheological parameter of the VP sea ice model through the variational data assimilation approach during the periods of strong sea ice convergence if accurate sea ice observations are available. Following this strategy, the developed variational data assimilation VP model was applied to the sea ice velocity (https://nsidc.org/data/nsidc-0116/versions/4), sea ice concentration (https://nsidc.org/data/) and CryoSat-2 sea ice thickness observations collected in the vicinity of three moorings in the Beaufort Sea during periods of intensive sea ice convergence. Ice velocities from moorings and atmospheric wind speed (NCEP-NCAR) were used as well. Our results show that conventional maximum compressive sea ice strength (Hibler, 1979) may depend on sea ice thickness or other parameters partly controlled by the sea ice thickness, which is driven by the seasonal cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polar Science
Polar Science ECOLOGY-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
3.90
自引率
5.60%
发文量
46
期刊介绍: Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication. - Space and upper atmosphere physics - Atmospheric science/climatology - Glaciology - Oceanography/sea ice studies - Geology/petrology - Solid earth geophysics/seismology - Marine Earth science - Geomorphology/Cenozoic-Quaternary geology - Meteoritics - Terrestrial biology - Marine biology - Animal ecology - Environment - Polar Engineering - Humanities and social sciences.
期刊最新文献
Community perspectives inform coastal marine ecosystem research in northwestern Greenland Editorial Board Characterization and discrimination of tundra plant leaves by Attenuated Total Reflection Fourier transform infrared spectroscopy Cold winds in the north: Three perspectives on the impact of Russia's war in Ukraine on security and international relations in the Arctic Russia lacks the financial resources to improve living standards in the Arctic: A case of the Sakha Republic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1