Wanpeng Huang, Tongyang Zhao, Chengguo Zhang, Yaxin Liu, Le Sui, Tao Hou, Donghai Jiang
{"title":"双巷道布置中支柱稳定性及其控制的评估","authors":"Wanpeng Huang, Tongyang Zhao, Chengguo Zhang, Yaxin Liu, Le Sui, Tao Hou, Donghai Jiang","doi":"10.1002/ese3.1884","DOIUrl":null,"url":null,"abstract":"<p>To solve the problem of controlling the stability of small coal pillars under the mining disturbance of the adjacent working face, the fourth panel 403 and 404 working faces of the Gaojiabao coal mine with two mining roadways is taken as the object of this research. The comprehensive research method of combining mechanical theory analysis, coal dynamic disturbance experiments and field engineering practice was adopted. First, the analysis determined the magnitude and frequency of fracture-related disturbance loading on the overburden roof of the working face; next, the strain and stress threshold indicators of the coal body, sensitive to the external disturbance load of 10<sup>3</sup> J magnitude (continuous disturbance deformation), were tested and obtained through a self-developed rock creep disturbance experimental system, and the stress threshold indicators of coal body specimens sensitive to creep disturbance were defined as the long-term strength. Then, a coal pillar-roof mechanics structure model was established in the premining and postmining areas of the working face, and the overlying support pressure on the coal pillar body was analysed. Finally, a small coal pillar composite reinforcement support technology with ‘two-way buttressing anchor cable for pressure reinforcement + steel pipe concrete pier column + overhead roof break’ was designed to ensuring that the coal pillar body would not be destabilised by cumulative disturbance and large deformation under disturbance. According postmining area support capacity calculations, the support loading acting on the coal pillar is approximately 17593 kN, with the stress being 2.93 MPa; and the factor of safety is approximately 1.23. After engineering practice application of this approach, the vertical deformation of the small coal pillar body and side heave disturbance deformation were effectively controlled during the working face mining disturbance, the vertical deformation of the reinforced coal pillar was only 187 mm, and the side heave deformation was finally stabilised at approximately 124 mm, which maintained good stability.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4192-4209"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1884","citationCount":"0","resultStr":"{\"title\":\"Assessment of pillar stability and its control in a double roadway layout\",\"authors\":\"Wanpeng Huang, Tongyang Zhao, Chengguo Zhang, Yaxin Liu, Le Sui, Tao Hou, Donghai Jiang\",\"doi\":\"10.1002/ese3.1884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To solve the problem of controlling the stability of small coal pillars under the mining disturbance of the adjacent working face, the fourth panel 403 and 404 working faces of the Gaojiabao coal mine with two mining roadways is taken as the object of this research. The comprehensive research method of combining mechanical theory analysis, coal dynamic disturbance experiments and field engineering practice was adopted. First, the analysis determined the magnitude and frequency of fracture-related disturbance loading on the overburden roof of the working face; next, the strain and stress threshold indicators of the coal body, sensitive to the external disturbance load of 10<sup>3</sup> J magnitude (continuous disturbance deformation), were tested and obtained through a self-developed rock creep disturbance experimental system, and the stress threshold indicators of coal body specimens sensitive to creep disturbance were defined as the long-term strength. Then, a coal pillar-roof mechanics structure model was established in the premining and postmining areas of the working face, and the overlying support pressure on the coal pillar body was analysed. Finally, a small coal pillar composite reinforcement support technology with ‘two-way buttressing anchor cable for pressure reinforcement + steel pipe concrete pier column + overhead roof break’ was designed to ensuring that the coal pillar body would not be destabilised by cumulative disturbance and large deformation under disturbance. According postmining area support capacity calculations, the support loading acting on the coal pillar is approximately 17593 kN, with the stress being 2.93 MPa; and the factor of safety is approximately 1.23. After engineering practice application of this approach, the vertical deformation of the small coal pillar body and side heave disturbance deformation were effectively controlled during the working face mining disturbance, the vertical deformation of the reinforced coal pillar was only 187 mm, and the side heave deformation was finally stabilised at approximately 124 mm, which maintained good stability.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"12 10\",\"pages\":\"4192-4209\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1884\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1884\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1884","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Assessment of pillar stability and its control in a double roadway layout
To solve the problem of controlling the stability of small coal pillars under the mining disturbance of the adjacent working face, the fourth panel 403 and 404 working faces of the Gaojiabao coal mine with two mining roadways is taken as the object of this research. The comprehensive research method of combining mechanical theory analysis, coal dynamic disturbance experiments and field engineering practice was adopted. First, the analysis determined the magnitude and frequency of fracture-related disturbance loading on the overburden roof of the working face; next, the strain and stress threshold indicators of the coal body, sensitive to the external disturbance load of 103 J magnitude (continuous disturbance deformation), were tested and obtained through a self-developed rock creep disturbance experimental system, and the stress threshold indicators of coal body specimens sensitive to creep disturbance were defined as the long-term strength. Then, a coal pillar-roof mechanics structure model was established in the premining and postmining areas of the working face, and the overlying support pressure on the coal pillar body was analysed. Finally, a small coal pillar composite reinforcement support technology with ‘two-way buttressing anchor cable for pressure reinforcement + steel pipe concrete pier column + overhead roof break’ was designed to ensuring that the coal pillar body would not be destabilised by cumulative disturbance and large deformation under disturbance. According postmining area support capacity calculations, the support loading acting on the coal pillar is approximately 17593 kN, with the stress being 2.93 MPa; and the factor of safety is approximately 1.23. After engineering practice application of this approach, the vertical deformation of the small coal pillar body and side heave disturbance deformation were effectively controlled during the working face mining disturbance, the vertical deformation of the reinforced coal pillar was only 187 mm, and the side heave deformation was finally stabilised at approximately 124 mm, which maintained good stability.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.