可重构纸基超材料天线:从二维到三维的结构过渡

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Science China Technological Sciences Pub Date : 2024-08-20 DOI:10.1007/s11431-024-2648-9
YaChen Pang, Song Gao, HuiMing Yao, LiWei Wang, JinQing Cao, ZiDong Zhang, JianChun Xu, YunSheng Guo, Ke Bi
{"title":"可重构纸基超材料天线:从二维到三维的结构过渡","authors":"YaChen Pang, Song Gao, HuiMing Yao, LiWei Wang, JinQing Cao, ZiDong Zhang, JianChun Xu, YunSheng Guo, Ke Bi","doi":"10.1007/s11431-024-2648-9","DOIUrl":null,"url":null,"abstract":"<p>Paper-based electronics offer a simple and cost-effective means to fabricate reconfigurable devices. In response to the problem of fixed shape and single function of most antennas, which limits their applications, a reconfigurable paper-based metamaterial antenna with 2D and 3D forms is presented for tunable operating frequency. The proposed antenna consists of two square split resonant rings fed by a coplanar waveguide. The working frequency of the 2D antenna is adjusted by the length, width, and opening size of the internal open resonant ring. While the folding angle of the antenna turns from 0° to 90°, the operating frequency of the paper-based metamaterial antenna changes from 2.759 to 4.223 GHz. In terms of 3D form, an additional resonant peak is generated by bending the paper-based metamaterial antenna, thus further realizing dual-band antenna design. After a simple process flow, a series of proposed antennas are fabricated and evaluated. The simulated and measured results both demonstrate that the proposed antenna has a good performance in turning the working band. The environment-friendly nature and pliability of paper, as well as simple fabrication procedures, make paper-based metamaterial promising candidates for future green electronics.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"21 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable paper-based metamaterial antenna: Structural transition from 2D to 3D\",\"authors\":\"YaChen Pang, Song Gao, HuiMing Yao, LiWei Wang, JinQing Cao, ZiDong Zhang, JianChun Xu, YunSheng Guo, Ke Bi\",\"doi\":\"10.1007/s11431-024-2648-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Paper-based electronics offer a simple and cost-effective means to fabricate reconfigurable devices. In response to the problem of fixed shape and single function of most antennas, which limits their applications, a reconfigurable paper-based metamaterial antenna with 2D and 3D forms is presented for tunable operating frequency. The proposed antenna consists of two square split resonant rings fed by a coplanar waveguide. The working frequency of the 2D antenna is adjusted by the length, width, and opening size of the internal open resonant ring. While the folding angle of the antenna turns from 0° to 90°, the operating frequency of the paper-based metamaterial antenna changes from 2.759 to 4.223 GHz. In terms of 3D form, an additional resonant peak is generated by bending the paper-based metamaterial antenna, thus further realizing dual-band antenna design. After a simple process flow, a series of proposed antennas are fabricated and evaluated. The simulated and measured results both demonstrate that the proposed antenna has a good performance in turning the working band. The environment-friendly nature and pliability of paper, as well as simple fabrication procedures, make paper-based metamaterial promising candidates for future green electronics.</p>\",\"PeriodicalId\":21612,\"journal\":{\"name\":\"Science China Technological Sciences\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Technological Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11431-024-2648-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-024-2648-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纸基电子器件为制造可重构设备提供了一种简单而经济的方法。针对大多数天线形状固定、功能单一、应用受限的问题,本文提出了一种可重构的纸基超材料天线,具有二维和三维形式,工作频率可调。所提出的天线由两个共面波导馈电的方形分裂谐振环组成。二维天线的工作频率可通过内部开放式谐振环的长度、宽度和开口尺寸进行调节。当天线的折角从 0° 变为 90° 时,纸基超材料天线的工作频率也从 2.759 GHz 变为 4.223 GHz。在三维形态方面,纸基超材料天线通过弯曲产生了额外的谐振峰,从而进一步实现了双频天线设计。经过简单的工艺流程,一系列拟议的天线被制造出来并进行了评估。仿真和测量结果均表明,所提出的天线在工作频段的转向方面具有良好的性能。纸张的环保性和柔韧性以及简单的制作流程,使得纸基超材料有望成为未来绿色电子产品的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconfigurable paper-based metamaterial antenna: Structural transition from 2D to 3D

Paper-based electronics offer a simple and cost-effective means to fabricate reconfigurable devices. In response to the problem of fixed shape and single function of most antennas, which limits their applications, a reconfigurable paper-based metamaterial antenna with 2D and 3D forms is presented for tunable operating frequency. The proposed antenna consists of two square split resonant rings fed by a coplanar waveguide. The working frequency of the 2D antenna is adjusted by the length, width, and opening size of the internal open resonant ring. While the folding angle of the antenna turns from 0° to 90°, the operating frequency of the paper-based metamaterial antenna changes from 2.759 to 4.223 GHz. In terms of 3D form, an additional resonant peak is generated by bending the paper-based metamaterial antenna, thus further realizing dual-band antenna design. After a simple process flow, a series of proposed antennas are fabricated and evaluated. The simulated and measured results both demonstrate that the proposed antenna has a good performance in turning the working band. The environment-friendly nature and pliability of paper, as well as simple fabrication procedures, make paper-based metamaterial promising candidates for future green electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Technological Sciences
Science China Technological Sciences ENGINEERING, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
10.90%
发文量
4380
审稿时长
3.3 months
期刊介绍: Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of technological sciences. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
A novel method for extracting and optimizing the complex permittivity of paper-based composites based on an artificial neural network model A systematic framework of constructing surrogate model for slider track peeling strength prediction Bridging the Fabry–Perot cavity and asymmetric Berreman mode for long-wave infrared nonreciprocal thermal emitters Unveiling the protective role of biofilm formation on the photoaging of microplastics Adhesive hydrogel interface for enhanced epidermal signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1