高熵合金激光熔覆技术:效果与应用

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Express Pub Date : 2024-09-10 DOI:10.1088/2053-1591/ad75e8
Om Prakash, Rituraj Chandrakar, Martin L, Jagesvar Verma, Anil kumar and Ankur Jaiswal
{"title":"高熵合金激光熔覆技术:效果与应用","authors":"Om Prakash, Rituraj Chandrakar, Martin L, Jagesvar Verma, Anil kumar and Ankur Jaiswal","doi":"10.1088/2053-1591/ad75e8","DOIUrl":null,"url":null,"abstract":"A multi-component category of an alloy containing very specific properties revolutionized the area of material science and the present engineering era. Laser cladding, a technique for surface coating, enhances surface quality and modifies properties using advanced coating technologies. In current trends, Laser cladding is mainly used in equipment and machine parts for enhancing surface properties, repairing damaged parts and surface coating caused by its advantages such as small heat-affected zone, low substrate damage, low dilution rate and exceptional metallurgical material bonding among coating and used substrate. Laser cladding improves substrates’ mechanical and various functional-specific properties, ensuring a high-quality balance between mechanical and surface attributes. The research society was able to investigate laser-cladding HEAs coatings because of the superior attributes of HEAs compared to ordinary alloys. This paper reviews current developments in laser-cladding HEAs coatings and the application of laser-cladding technology to HEAs materials. The laser cladding high-entropy alloy coatings have potential applications in corrosion, wear, and oxidation resistance, as well as their respective substrates. Cladded coatings composed of HEAs materials are measured to have shown potential applications in recent technology, opening exciting possibilities for the future. The study also discusses current trends and future prospects.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser cladding technology for high entropy alloys: effect and applications\",\"authors\":\"Om Prakash, Rituraj Chandrakar, Martin L, Jagesvar Verma, Anil kumar and Ankur Jaiswal\",\"doi\":\"10.1088/2053-1591/ad75e8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-component category of an alloy containing very specific properties revolutionized the area of material science and the present engineering era. Laser cladding, a technique for surface coating, enhances surface quality and modifies properties using advanced coating technologies. In current trends, Laser cladding is mainly used in equipment and machine parts for enhancing surface properties, repairing damaged parts and surface coating caused by its advantages such as small heat-affected zone, low substrate damage, low dilution rate and exceptional metallurgical material bonding among coating and used substrate. Laser cladding improves substrates’ mechanical and various functional-specific properties, ensuring a high-quality balance between mechanical and surface attributes. The research society was able to investigate laser-cladding HEAs coatings because of the superior attributes of HEAs compared to ordinary alloys. This paper reviews current developments in laser-cladding HEAs coatings and the application of laser-cladding technology to HEAs materials. The laser cladding high-entropy alloy coatings have potential applications in corrosion, wear, and oxidation resistance, as well as their respective substrates. Cladded coatings composed of HEAs materials are measured to have shown potential applications in recent technology, opening exciting possibilities for the future. The study also discusses current trends and future prospects.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad75e8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad75e8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一种具有特殊性能的多组分合金彻底改变了材料科学领域和当今工程时代。激光熔覆是一种表面涂层技术,可利用先进的涂层技术提高表面质量并改变性能。从目前的发展趋势来看,激光熔覆主要用于设备和机械零件,以提高表面性能、修复受损零件和表面涂层,其优点包括热影响区小、基体损伤小、稀释率低以及涂层和所用基体之间的冶金材料结合力强。激光熔覆技术可以改善基材的机械性能和各种特定功能特性,确保机械性能和表面特性之间的高质量平衡。由于 HEAs 与普通合金相比具有更优越的属性,因此研究协会能够对激光熔覆 HEAs 涂层进行研究。本文回顾了激光熔覆 HEAs 涂层的最新发展,以及激光熔覆技术在 HEAs 材料中的应用。激光熔覆高熵合金涂层在耐腐蚀、耐磨损、抗氧化以及各自的基材方面都具有潜在的应用价值。据测定,由 HEAs 材料组成的熔覆涂层在最近的技术中显示出潜在的应用前景,为未来带来了令人兴奋的可能性。研究还讨论了当前趋势和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser cladding technology for high entropy alloys: effect and applications
A multi-component category of an alloy containing very specific properties revolutionized the area of material science and the present engineering era. Laser cladding, a technique for surface coating, enhances surface quality and modifies properties using advanced coating technologies. In current trends, Laser cladding is mainly used in equipment and machine parts for enhancing surface properties, repairing damaged parts and surface coating caused by its advantages such as small heat-affected zone, low substrate damage, low dilution rate and exceptional metallurgical material bonding among coating and used substrate. Laser cladding improves substrates’ mechanical and various functional-specific properties, ensuring a high-quality balance between mechanical and surface attributes. The research society was able to investigate laser-cladding HEAs coatings because of the superior attributes of HEAs compared to ordinary alloys. This paper reviews current developments in laser-cladding HEAs coatings and the application of laser-cladding technology to HEAs materials. The laser cladding high-entropy alloy coatings have potential applications in corrosion, wear, and oxidation resistance, as well as their respective substrates. Cladded coatings composed of HEAs materials are measured to have shown potential applications in recent technology, opening exciting possibilities for the future. The study also discusses current trends and future prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Express
Materials Research Express MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.50
自引率
4.30%
发文量
640
审稿时长
12 weeks
期刊介绍: A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.
期刊最新文献
Effect of scanning speeds on microstructure evolution and properties of 70Cr8Ni2Y coatings by direct laser deposition A simple green synthesis of carbon quantum dots from Prunus Armeniaca and their application as fluorescent probes for the selective and sensitive detection of Cd2+ metal ion Growth, magnetic, and electronic properties of Ni-Zn ferrites thin films Effect of Y content on microstructure evolution and tensile properties of Mg-8Li-3Al-2Sn-xY alloys Effect of x-ray irradiation on magnetocaloric materials, (MnNiSi)1-x(Fe2Ge)x and LaFe13-x-yMnxSiyHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1