利用新型生物天然颗粒膨润土-锯末-玉米芯(GBSC)高效吸附废水中的酸性橙 7:混合物优化、吸附动力学和再生。

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2024-09-12 DOI:10.1016/j.envres.2024.119966
{"title":"利用新型生物天然颗粒膨润土-锯末-玉米芯(GBSC)高效吸附废水中的酸性橙 7:混合物优化、吸附动力学和再生。","authors":"","doi":"10.1016/j.envres.2024.119966","DOIUrl":null,"url":null,"abstract":"<div><p>The removal of dyes from industrial wastewater is one of the most environmental challenges that should be addressed through sustainable technologies. In this study, a novel green and cost-effective granular from bentonite and bio-wastes of sawdust and corncob (GBSC) was prepared for sustainable treatment of acid orange 7 (AO7) dye wastewater. The d-optimal mixture method was employed to determine the optimum combination of the GBSC in terms of dye adsorption and structure stability. Characterizations of the GBSC were investigated using SEM, XRD, FTIR and BET analyses and compared with bentonite powder (BP), modified bentonite powder (MBP), and granular modified bentonite (GMB). According to the results, a mixture of bentonite 60 wt%, sawdust 20 wt% and corncob 20 wt% at 550 °C yielded the optimal combination of the GBSC which resulted to the highest adsorption capacity 135.22 mg/g, the lowest mass loss 3.1% and maximum crushing strength 12.275 N. The kinetic and isotherm of the adsorption data were fitted well by the pseudo-second-order model and Langmuir isotherm. Our finding suggested a green circular economy model by utilizing agriculture wastes (sawdust and corncob) to synthesize GBSC for sustainable dye wastewater treatment, which offers a cost-effective adsorbent (0.907 $/g) with high regeneration (4 times reusability with 40.5% removal rate) to keep them in circulation for as long as possible.</p></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient adsorption of acid orange 7 from wastewater using novel bio-natural granular bentonite-sawdust-corncob (GBSC): Mixture optimization, adsorption kinetic and regeneration\",\"authors\":\"\",\"doi\":\"10.1016/j.envres.2024.119966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The removal of dyes from industrial wastewater is one of the most environmental challenges that should be addressed through sustainable technologies. In this study, a novel green and cost-effective granular from bentonite and bio-wastes of sawdust and corncob (GBSC) was prepared for sustainable treatment of acid orange 7 (AO7) dye wastewater. The d-optimal mixture method was employed to determine the optimum combination of the GBSC in terms of dye adsorption and structure stability. Characterizations of the GBSC were investigated using SEM, XRD, FTIR and BET analyses and compared with bentonite powder (BP), modified bentonite powder (MBP), and granular modified bentonite (GMB). According to the results, a mixture of bentonite 60 wt%, sawdust 20 wt% and corncob 20 wt% at 550 °C yielded the optimal combination of the GBSC which resulted to the highest adsorption capacity 135.22 mg/g, the lowest mass loss 3.1% and maximum crushing strength 12.275 N. The kinetic and isotherm of the adsorption data were fitted well by the pseudo-second-order model and Langmuir isotherm. Our finding suggested a green circular economy model by utilizing agriculture wastes (sawdust and corncob) to synthesize GBSC for sustainable dye wastewater treatment, which offers a cost-effective adsorbent (0.907 $/g) with high regeneration (4 times reusability with 40.5% removal rate) to keep them in circulation for as long as possible.</p></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124018711\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124018711","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从工业废水中去除染料是最严峻的环境挑战之一,应通过可持续技术加以解决。本研究利用膨润土以及锯末和玉米芯生物废料制备了一种新型绿色、经济的颗粒(GBSC),用于酸性橙 7(AO7)染料废水的可持续处理。采用 d 最佳混合物法确定了 GBSC 在染料吸附和结构稳定性方面的最佳组合。使用 SEM、XRD、FTIR 和 BET 分析法研究了 GBSC 的特性,并与膨润土粉(BP)、改性膨润土粉(MBP)和颗粒改性膨润土(GMB)进行了比较。结果表明,在 550°C 下,膨润土 60 wt.%、锯末 20 wt.%和玉米芯 20 wt.%的混合物是 GBSC 的最佳组合,其吸附容量最高为 135.22 mg/g,质量损失最低为 3.1%,最大压碎强度为 12.275 N。我们的研究结果提出了一种绿色循环经济模式,即利用农业废弃物(锯末和玉米芯)合成可持续处理染料废水的 GBSC,这种吸附剂成本低(0.907 美元/克),再生能力强(可重复使用 4 次,去除率为 40.5%),可使其尽可能长时间地循环使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient adsorption of acid orange 7 from wastewater using novel bio-natural granular bentonite-sawdust-corncob (GBSC): Mixture optimization, adsorption kinetic and regeneration

The removal of dyes from industrial wastewater is one of the most environmental challenges that should be addressed through sustainable technologies. In this study, a novel green and cost-effective granular from bentonite and bio-wastes of sawdust and corncob (GBSC) was prepared for sustainable treatment of acid orange 7 (AO7) dye wastewater. The d-optimal mixture method was employed to determine the optimum combination of the GBSC in terms of dye adsorption and structure stability. Characterizations of the GBSC were investigated using SEM, XRD, FTIR and BET analyses and compared with bentonite powder (BP), modified bentonite powder (MBP), and granular modified bentonite (GMB). According to the results, a mixture of bentonite 60 wt%, sawdust 20 wt% and corncob 20 wt% at 550 °C yielded the optimal combination of the GBSC which resulted to the highest adsorption capacity 135.22 mg/g, the lowest mass loss 3.1% and maximum crushing strength 12.275 N. The kinetic and isotherm of the adsorption data were fitted well by the pseudo-second-order model and Langmuir isotherm. Our finding suggested a green circular economy model by utilizing agriculture wastes (sawdust and corncob) to synthesize GBSC for sustainable dye wastewater treatment, which offers a cost-effective adsorbent (0.907 $/g) with high regeneration (4 times reusability with 40.5% removal rate) to keep them in circulation for as long as possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
Assessment of Cerium Adsorption Potential of Phosphoric acid Activated Biochar in Aqueous System: Modelling and Mechanistic Insights. Luminescent iron phthalocyanine organic polymer nanosheets with space-separated dual-active sites for the detection and photocatalytic reduction of Cr(Ⅵ) from wastewater Monitoring, simulation and early warning of cyanobacterial harmful algal blooms: An upgraded framework for eutrophic lakes Bisphenol S exposure promoted stemness of triple-negative breast cancer cells via regulating Gli1-mediated Sonic hedgehog pathway. Effects of different quorum sensing signal molecules on alleviation of ammonia inhibition during biomethanation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1