Siamak Pedrammehr, Moosa Sajed, Sajjad Pakzad, Ahad Zare Jond, Mir Mohammad Ettefagh and Saman Tutunchilar
{"title":"利用搅拌摩擦加工技术制备的 Al1050/B2O3+Cu 混合表面纳米复合材料的微观结构和力学特性","authors":"Siamak Pedrammehr, Moosa Sajed, Sajjad Pakzad, Ahad Zare Jond, Mir Mohammad Ettefagh and Saman Tutunchilar","doi":"10.1088/2053-1591/ad74cc","DOIUrl":null,"url":null,"abstract":"In the realm of advanced materials engineering, the development of hybrid nanocomposites has garnered significant attention due to their superior mechanical properties and potential applications. The primary aim of this research is to develop a surface hybrid nanocomposite using Al1050 aluminium alloy (5 mm thickness) as the base material through friction stir processing. B2O3 nano-powder, averaging 100 nm in size, and Cu micro-powder, averaging 5 μm in size, were incorporated into the aluminium surface in various volume ratios using the Friction Stir Processing (FSP). The processing parameters included a tool rotational speed of 1250 rpm, a feed rate of 50 mm min−1, and a tilt angle of 3°. The number of passes was set at two levels: 1 and 3 passes. The influence of the volume ratio of constituents and the number of passes on the microstructure and mechanical properties of the resulting composite was thoroughly explored. The samples underwent tensile tests, microhardness tests, and metallographic examinations using both Optical Microscopy (OM) and Field Emission Scanning Electron Microscopy (FE-SEM). The composite with 25%-B2O3-75%-Cu composition exhibited the highest stress and hardness values, measuring 139 MPa and 58.14 HV, respectively. The enhanced strength of this sample is attributed to the presence of additives and the resultant grain size.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"6 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and mechanical characteristics of Al1050/B2O3+Cu hybrid surface nanocomposite fabricated using friction stir processing\",\"authors\":\"Siamak Pedrammehr, Moosa Sajed, Sajjad Pakzad, Ahad Zare Jond, Mir Mohammad Ettefagh and Saman Tutunchilar\",\"doi\":\"10.1088/2053-1591/ad74cc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of advanced materials engineering, the development of hybrid nanocomposites has garnered significant attention due to their superior mechanical properties and potential applications. The primary aim of this research is to develop a surface hybrid nanocomposite using Al1050 aluminium alloy (5 mm thickness) as the base material through friction stir processing. B2O3 nano-powder, averaging 100 nm in size, and Cu micro-powder, averaging 5 μm in size, were incorporated into the aluminium surface in various volume ratios using the Friction Stir Processing (FSP). The processing parameters included a tool rotational speed of 1250 rpm, a feed rate of 50 mm min−1, and a tilt angle of 3°. The number of passes was set at two levels: 1 and 3 passes. The influence of the volume ratio of constituents and the number of passes on the microstructure and mechanical properties of the resulting composite was thoroughly explored. The samples underwent tensile tests, microhardness tests, and metallographic examinations using both Optical Microscopy (OM) and Field Emission Scanning Electron Microscopy (FE-SEM). The composite with 25%-B2O3-75%-Cu composition exhibited the highest stress and hardness values, measuring 139 MPa and 58.14 HV, respectively. The enhanced strength of this sample is attributed to the presence of additives and the resultant grain size.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad74cc\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad74cc","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure and mechanical characteristics of Al1050/B2O3+Cu hybrid surface nanocomposite fabricated using friction stir processing
In the realm of advanced materials engineering, the development of hybrid nanocomposites has garnered significant attention due to their superior mechanical properties and potential applications. The primary aim of this research is to develop a surface hybrid nanocomposite using Al1050 aluminium alloy (5 mm thickness) as the base material through friction stir processing. B2O3 nano-powder, averaging 100 nm in size, and Cu micro-powder, averaging 5 μm in size, were incorporated into the aluminium surface in various volume ratios using the Friction Stir Processing (FSP). The processing parameters included a tool rotational speed of 1250 rpm, a feed rate of 50 mm min−1, and a tilt angle of 3°. The number of passes was set at two levels: 1 and 3 passes. The influence of the volume ratio of constituents and the number of passes on the microstructure and mechanical properties of the resulting composite was thoroughly explored. The samples underwent tensile tests, microhardness tests, and metallographic examinations using both Optical Microscopy (OM) and Field Emission Scanning Electron Microscopy (FE-SEM). The composite with 25%-B2O3-75%-Cu composition exhibited the highest stress and hardness values, measuring 139 MPa and 58.14 HV, respectively. The enhanced strength of this sample is attributed to the presence of additives and the resultant grain size.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.