Xinjun Yang, Xiangwei Liao, Dongxiang Wang, Jiyun Du, Fangyang Yuan, Wei Yu, Qingsheng Li
{"title":"评价梯度纳米结构材料力学性能的小冲压试验影响因素研究","authors":"Xinjun Yang, Xiangwei Liao, Dongxiang Wang, Jiyun Du, Fangyang Yuan, Wei Yu, Qingsheng Li","doi":"10.1088/2053-1591/ad7447","DOIUrl":null,"url":null,"abstract":"The influence factors of small punch test (SPT) were investigated to evaluate the mechanical properties of gradient nanostructured (GNS) materials. The gradient nanostructure was prepared on the top layer of S30408 austenitic stainless steel by ultrasonic impact treatment (UIT). The mechanical properties of the GNS material were obtained using SPT and correlated with those obtained by standard tensile tests. The results indicate that, when the specimen thickness is 0.5 mm, the sphere diameter is 2.4 mm, the punch velocity is 0.5 mm min<sup>−1</sup>, and the gradient nano-grained layer is placed face-on in the mold, the GNS material exhibits better plastic deformability. The SPT specimen achieves better bearing capacity, and the mechanical properties of the GNS material obtained by SPT are more accurate. The yield strength and tensile strength of the GNS material were also evaluated by analytical and empirical methods in SPT. The error is approximately 10% compared with the standard tensile test results, which is within the allowable range.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"86 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on influence factors of small punch test to evaluate the mechanical properties of gradient nanostructured material\",\"authors\":\"Xinjun Yang, Xiangwei Liao, Dongxiang Wang, Jiyun Du, Fangyang Yuan, Wei Yu, Qingsheng Li\",\"doi\":\"10.1088/2053-1591/ad7447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence factors of small punch test (SPT) were investigated to evaluate the mechanical properties of gradient nanostructured (GNS) materials. The gradient nanostructure was prepared on the top layer of S30408 austenitic stainless steel by ultrasonic impact treatment (UIT). The mechanical properties of the GNS material were obtained using SPT and correlated with those obtained by standard tensile tests. The results indicate that, when the specimen thickness is 0.5 mm, the sphere diameter is 2.4 mm, the punch velocity is 0.5 mm min<sup>−1</sup>, and the gradient nano-grained layer is placed face-on in the mold, the GNS material exhibits better plastic deformability. The SPT specimen achieves better bearing capacity, and the mechanical properties of the GNS material obtained by SPT are more accurate. The yield strength and tensile strength of the GNS material were also evaluated by analytical and empirical methods in SPT. The error is approximately 10% compared with the standard tensile test results, which is within the allowable range.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad7447\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad7447","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on influence factors of small punch test to evaluate the mechanical properties of gradient nanostructured material
The influence factors of small punch test (SPT) were investigated to evaluate the mechanical properties of gradient nanostructured (GNS) materials. The gradient nanostructure was prepared on the top layer of S30408 austenitic stainless steel by ultrasonic impact treatment (UIT). The mechanical properties of the GNS material were obtained using SPT and correlated with those obtained by standard tensile tests. The results indicate that, when the specimen thickness is 0.5 mm, the sphere diameter is 2.4 mm, the punch velocity is 0.5 mm min−1, and the gradient nano-grained layer is placed face-on in the mold, the GNS material exhibits better plastic deformability. The SPT specimen achieves better bearing capacity, and the mechanical properties of the GNS material obtained by SPT are more accurate. The yield strength and tensile strength of the GNS material were also evaluated by analytical and empirical methods in SPT. The error is approximately 10% compared with the standard tensile test results, which is within the allowable range.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.