离子土壤稳定剂与砂的复合加固对膨润土影响的实验研究

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Express Pub Date : 2024-08-27 DOI:10.1088/2053-1591/ad6ff3
Fenghua Wang, Yuefeng Yuan, Meiying Hou, Ailin Wang, Yani Yang, Qian Xiong
{"title":"离子土壤稳定剂与砂的复合加固对膨润土影响的实验研究","authors":"Fenghua Wang, Yuefeng Yuan, Meiying Hou, Ailin Wang, Yani Yang, Qian Xiong","doi":"10.1088/2053-1591/ad6ff3","DOIUrl":null,"url":null,"abstract":"This paper utilizes both the ionic soil stabilizer (ISS) and sand to strengthen bentonite, as ISS effectively reduces its expansive properties and sand rapidly improves its strength to reduce cracks. Various experiments are conducted to analyze the changes in physical and mechanical properties of the bentonite strengthened by ISS-sand (ISB). The results show that not only do the sand particles enhance the strength of bentonite, but also the ISS significantly reduces its expansibility. Furthermore, the mass ratio of sand to bentonite has different effects on the unconfined compressive strength (UCS) and the freeze-tolerance of sand-reinforced bentonite (SB) and ISB. These findings suggest that a comprehensive consideration of the sand mixing rate is necessary when implementing ISS reinforcement on natural expansive soil.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"9 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the effects of composite reinforcement of ionic soil stabilizer and sand on bentonite\",\"authors\":\"Fenghua Wang, Yuefeng Yuan, Meiying Hou, Ailin Wang, Yani Yang, Qian Xiong\",\"doi\":\"10.1088/2053-1591/ad6ff3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper utilizes both the ionic soil stabilizer (ISS) and sand to strengthen bentonite, as ISS effectively reduces its expansive properties and sand rapidly improves its strength to reduce cracks. Various experiments are conducted to analyze the changes in physical and mechanical properties of the bentonite strengthened by ISS-sand (ISB). The results show that not only do the sand particles enhance the strength of bentonite, but also the ISS significantly reduces its expansibility. Furthermore, the mass ratio of sand to bentonite has different effects on the unconfined compressive strength (UCS) and the freeze-tolerance of sand-reinforced bentonite (SB) and ISB. These findings suggest that a comprehensive consideration of the sand mixing rate is necessary when implementing ISS reinforcement on natural expansive soil.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad6ff3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad6ff3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文利用离子土壤稳定剂(ISS)和砂子来加固膨润土,因为 ISS 能有效降低膨润土的膨胀性,而砂子能迅速提高膨润土的强度以减少裂缝。研究人员通过各种实验分析了经 ISS-砂(ISB)加固的膨润土的物理和机械性能变化。结果表明,砂粒不仅能增强膨润土的强度,而且 ISS 还能显著降低其膨胀性。此外,砂与膨润土的质量比对砂加固膨润土(SB)和 ISB 的无侧限抗压强度(UCS)和抗冻性也有不同的影响。这些研究结果表明,在天然膨胀土上实施 ISS 加固时,有必要全面考虑砂的混合率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on the effects of composite reinforcement of ionic soil stabilizer and sand on bentonite
This paper utilizes both the ionic soil stabilizer (ISS) and sand to strengthen bentonite, as ISS effectively reduces its expansive properties and sand rapidly improves its strength to reduce cracks. Various experiments are conducted to analyze the changes in physical and mechanical properties of the bentonite strengthened by ISS-sand (ISB). The results show that not only do the sand particles enhance the strength of bentonite, but also the ISS significantly reduces its expansibility. Furthermore, the mass ratio of sand to bentonite has different effects on the unconfined compressive strength (UCS) and the freeze-tolerance of sand-reinforced bentonite (SB) and ISB. These findings suggest that a comprehensive consideration of the sand mixing rate is necessary when implementing ISS reinforcement on natural expansive soil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Express
Materials Research Express MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.50
自引率
4.30%
发文量
640
审稿时长
12 weeks
期刊介绍: A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.
期刊最新文献
Effect of scanning speeds on microstructure evolution and properties of 70Cr8Ni2Y coatings by direct laser deposition A simple green synthesis of carbon quantum dots from Prunus Armeniaca and their application as fluorescent probes for the selective and sensitive detection of Cd2+ metal ion Growth, magnetic, and electronic properties of Ni-Zn ferrites thin films Effect of Y content on microstructure evolution and tensile properties of Mg-8Li-3Al-2Sn-xY alloys Effect of x-ray irradiation on magnetocaloric materials, (MnNiSi)1-x(Fe2Ge)x and LaFe13-x-yMnxSiyHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1