{"title":"沉积物尺寸对非达西流的影响:从伊兹巴什方程和福赫海默惯性系数分析中获得的启示","authors":"Kuldeep Singh, Hanna Camulli, Jacob Bradley","doi":"10.1007/s10040-024-02823-w","DOIUrl":null,"url":null,"abstract":"<p>The transition from Darcy to non-Darcy flow regimes was investigated using column experiments. This revealed key relationships between sediment characteristics and critical thresholds for the onset of the non-Darcy flow regime, as well as inertial flow parameters. An exponential dependence of the critical Reynolds number (Re<sub>c</sub>) on hydraulic conductivity (<i>K</i>) and a linear dependence on sediment size (<i>d</i><sub>50</sub>) was found. The analysis revealed a potentially universal relationship between the critical hydraulic gradient (<i>I</i><sub>c</sub>) and <i>K</i>, with a power-law exponent of –3/2, consistent with previous investigations. Additionally, <i>I</i><sub>c</sub> was found to be inversely proportional to the power law of the square root of <i>d</i><sub>50</sub>. Novel relationships are derived for estimating the Izbash equation inertial exponent (<i>n</i>) and the Forchheimer inertial coefficient (<span>\\(\\beta\\)</span>) based on sediment characteristics. The exponent (<i>n</i>) was found to decrease with <i>d</i><sub>50</sub> and increase with <i>K</i>, following power-law relationships. A new equation is proposed, capable of predicting <span>\\(\\beta\\)</span> with slightly improved accuracy, outperforming numerous and previously proposed empirical equations. Additionally, these data validate the works of Ergun and Irmay as an alternative for <span>\\(\\beta\\)</span> estimation using porosity and sediment size. As the attainment of statistical significance in multiparameter curve fitting can be trivial, it has led to the proliferation of empirical equations for estimating <i>β</i>. This study highlights the limitations of existing empirical methods in determining <i>β</i> and emphasizes the necessity for a universal approach to predict this critical parameter, which will facilitate broader adoption of the Forchheimer equation.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sediment size effects on non-Darcy flow: insights from Izbash equation and Forchheimer inertial coefficient analysis\",\"authors\":\"Kuldeep Singh, Hanna Camulli, Jacob Bradley\",\"doi\":\"10.1007/s10040-024-02823-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The transition from Darcy to non-Darcy flow regimes was investigated using column experiments. This revealed key relationships between sediment characteristics and critical thresholds for the onset of the non-Darcy flow regime, as well as inertial flow parameters. An exponential dependence of the critical Reynolds number (Re<sub>c</sub>) on hydraulic conductivity (<i>K</i>) and a linear dependence on sediment size (<i>d</i><sub>50</sub>) was found. The analysis revealed a potentially universal relationship between the critical hydraulic gradient (<i>I</i><sub>c</sub>) and <i>K</i>, with a power-law exponent of –3/2, consistent with previous investigations. Additionally, <i>I</i><sub>c</sub> was found to be inversely proportional to the power law of the square root of <i>d</i><sub>50</sub>. Novel relationships are derived for estimating the Izbash equation inertial exponent (<i>n</i>) and the Forchheimer inertial coefficient (<span>\\\\(\\\\beta\\\\)</span>) based on sediment characteristics. The exponent (<i>n</i>) was found to decrease with <i>d</i><sub>50</sub> and increase with <i>K</i>, following power-law relationships. A new equation is proposed, capable of predicting <span>\\\\(\\\\beta\\\\)</span> with slightly improved accuracy, outperforming numerous and previously proposed empirical equations. Additionally, these data validate the works of Ergun and Irmay as an alternative for <span>\\\\(\\\\beta\\\\)</span> estimation using porosity and sediment size. As the attainment of statistical significance in multiparameter curve fitting can be trivial, it has led to the proliferation of empirical equations for estimating <i>β</i>. This study highlights the limitations of existing empirical methods in determining <i>β</i> and emphasizes the necessity for a universal approach to predict this critical parameter, which will facilitate broader adoption of the Forchheimer equation.</p>\",\"PeriodicalId\":13013,\"journal\":{\"name\":\"Hydrogeology Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrogeology Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10040-024-02823-w\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogeology Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10040-024-02823-w","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过柱状实验研究了从达西流向非达西流的过渡。这揭示了沉积物特征与非达西流态开始的临界阈值以及惯性流参数之间的关键关系。临界雷诺数(Rec)与水力传导系数(K)呈指数关系,与沉积物大小(d50)呈线性关系。分析表明,临界水力坡度(Ic)与 K 之间存在潜在的普遍关系,其幂律指数为-3/2,与之前的研究结果一致。此外,还发现 Ic 与 d50 平方根的幂律成反比。根据沉积物特征,得出了估算伊兹巴什方程惯性指数(n)和福克海默惯性系数(\(\beta\))的新关系。根据幂律关系,指数(n)随 d50 的减小而减小,随 K 的增大而增大。我们提出了一个新的方程,它能够预测 \(\beta\) 的准确性略有提高,优于许多以前提出的经验方程。此外,这些数据还验证了 Ergun 和 Irmay 的研究成果,可以作为使用孔隙度和沉积物粒度估算 (\beta\)的替代方法。由于在多参数曲线拟合中达到统计意义是微不足道的,这导致了用于估计 β 的经验方程的激增。 这项研究强调了现有经验方法在确定 β 方面的局限性,并强调了采用通用方法预测这一关键参数的必要性,这将促进 Forchheimer 方程的广泛采用。
Sediment size effects on non-Darcy flow: insights from Izbash equation and Forchheimer inertial coefficient analysis
The transition from Darcy to non-Darcy flow regimes was investigated using column experiments. This revealed key relationships between sediment characteristics and critical thresholds for the onset of the non-Darcy flow regime, as well as inertial flow parameters. An exponential dependence of the critical Reynolds number (Rec) on hydraulic conductivity (K) and a linear dependence on sediment size (d50) was found. The analysis revealed a potentially universal relationship between the critical hydraulic gradient (Ic) and K, with a power-law exponent of –3/2, consistent with previous investigations. Additionally, Ic was found to be inversely proportional to the power law of the square root of d50. Novel relationships are derived for estimating the Izbash equation inertial exponent (n) and the Forchheimer inertial coefficient (\(\beta\)) based on sediment characteristics. The exponent (n) was found to decrease with d50 and increase with K, following power-law relationships. A new equation is proposed, capable of predicting \(\beta\) with slightly improved accuracy, outperforming numerous and previously proposed empirical equations. Additionally, these data validate the works of Ergun and Irmay as an alternative for \(\beta\) estimation using porosity and sediment size. As the attainment of statistical significance in multiparameter curve fitting can be trivial, it has led to the proliferation of empirical equations for estimating β. This study highlights the limitations of existing empirical methods in determining β and emphasizes the necessity for a universal approach to predict this critical parameter, which will facilitate broader adoption of the Forchheimer equation.
期刊介绍:
Hydrogeology Journal was founded in 1992 to foster understanding of hydrogeology; to describe worldwide progress in hydrogeology; and to provide an accessible forum for scientists, researchers, engineers, and practitioners in developing and industrialized countries.
Since then, the journal has earned a large worldwide readership. Its peer-reviewed research articles integrate subsurface hydrology and geology with supporting disciplines: geochemistry, geophysics, geomorphology, geobiology, surface-water hydrology, tectonics, numerical modeling, economics, and sociology.