S. K. Sutar, K. Ganguly, S. K. Pradhan, R. Pradhan
{"title":"基于几何形状的呼吸裂缝模型对粘弹性复合材料转子-轴系统的影响","authors":"S. K. Sutar, K. Ganguly, S. K. Pradhan, R. Pradhan","doi":"10.1007/s11043-024-09730-3","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the role of a breathing crack on a viscoelastic composite rotor-shaft system supported at the ends by journal bearings. A finite element-based mathematical formulation is developed to model the breathing crack. The geometry of the crack configuration is used to derive a time-dependent stiffness matrix. This matrix is then incorporated into the equation of motion for the composite shaft, derived with the Equivalent Modulus Theory (EMT). The equation of motion is of higher order due to the inclusion of the material’s internal damping behavior, modeled using an operator-based viscoelastic model. Upon validating the mathematical model of the breathing crack, we analyzed its effects over one complete shaft rotation. This analysis further compared the strain energy and orbit plots of the cracked shaft with those of an intact shaft.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"3 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of a geometry-based breathing crack model on a viscoelastic composite rotor-shaft system\",\"authors\":\"S. K. Sutar, K. Ganguly, S. K. Pradhan, R. Pradhan\",\"doi\":\"10.1007/s11043-024-09730-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the role of a breathing crack on a viscoelastic composite rotor-shaft system supported at the ends by journal bearings. A finite element-based mathematical formulation is developed to model the breathing crack. The geometry of the crack configuration is used to derive a time-dependent stiffness matrix. This matrix is then incorporated into the equation of motion for the composite shaft, derived with the Equivalent Modulus Theory (EMT). The equation of motion is of higher order due to the inclusion of the material’s internal damping behavior, modeled using an operator-based viscoelastic model. Upon validating the mathematical model of the breathing crack, we analyzed its effects over one complete shaft rotation. This analysis further compared the strain energy and orbit plots of the cracked shaft with those of an intact shaft.</p>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11043-024-09730-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11043-024-09730-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
The effect of a geometry-based breathing crack model on a viscoelastic composite rotor-shaft system
This study investigates the role of a breathing crack on a viscoelastic composite rotor-shaft system supported at the ends by journal bearings. A finite element-based mathematical formulation is developed to model the breathing crack. The geometry of the crack configuration is used to derive a time-dependent stiffness matrix. This matrix is then incorporated into the equation of motion for the composite shaft, derived with the Equivalent Modulus Theory (EMT). The equation of motion is of higher order due to the inclusion of the material’s internal damping behavior, modeled using an operator-based viscoelastic model. Upon validating the mathematical model of the breathing crack, we analyzed its effects over one complete shaft rotation. This analysis further compared the strain energy and orbit plots of the cracked shaft with those of an intact shaft.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.