Yue Zhou, Yuanyuan Jiang, Xiangyu Chen, Hongchen Long, Mao Zhang, Zili Tang, Yufang He, Lei Zhang, Tao Le
{"title":"提高 Tb3+ 功能化锆基双金属 MOF 在鱼类孔雀石绿肉眼检测中的灵敏度和准确性","authors":"Yue Zhou, Yuanyuan Jiang, Xiangyu Chen, Hongchen Long, Mao Zhang, Zili Tang, Yufang He, Lei Zhang, Tao Le","doi":"10.3390/foods13172855","DOIUrl":null,"url":null,"abstract":"The ratiometric fluorescent probe UiO-OH@Tb, a zirconium-based MOF functionalized with Tb3+, was synthesized using a hydrothermal method. This probe employs the fluorescence resonance energy transfer (FRET) mechanism between Tb3+ and malachite green (MG) for the double-inverse signal ratiometric fluorescence detection of MG. The probe’s color shifts from lime green to blue with an increasing concentration of MG. In contrast, the monometallic MOFs’ (UiO-OH) probe shows only blue fluorescence quenching due to the inner filter effect (IFE) after interacting with MG. Additionally, the composite fluorescent probe (UiO-OH@Tb) exhibits superior sensitivity, with a detection limit (LOD) of 0.19 μM, which is significantly lower than that of the monometallic MOFs (25 μM). Moreover, the content of MG can be detected on-site (LOD = 0.94 μM) using the RGB function of smartphones. Hence, the UiO-OH@Tb probe is proven to be an ideal material for MG detection, demonstrating significant practical value in real-world applications.","PeriodicalId":12386,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Sensitivity and Accuracy of Tb3+-Functionalized Zirconium-Based Bimetallic MOF for Visual Detection of Malachite Green in Fish\",\"authors\":\"Yue Zhou, Yuanyuan Jiang, Xiangyu Chen, Hongchen Long, Mao Zhang, Zili Tang, Yufang He, Lei Zhang, Tao Le\",\"doi\":\"10.3390/foods13172855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ratiometric fluorescent probe UiO-OH@Tb, a zirconium-based MOF functionalized with Tb3+, was synthesized using a hydrothermal method. This probe employs the fluorescence resonance energy transfer (FRET) mechanism between Tb3+ and malachite green (MG) for the double-inverse signal ratiometric fluorescence detection of MG. The probe’s color shifts from lime green to blue with an increasing concentration of MG. In contrast, the monometallic MOFs’ (UiO-OH) probe shows only blue fluorescence quenching due to the inner filter effect (IFE) after interacting with MG. Additionally, the composite fluorescent probe (UiO-OH@Tb) exhibits superior sensitivity, with a detection limit (LOD) of 0.19 μM, which is significantly lower than that of the monometallic MOFs (25 μM). Moreover, the content of MG can be detected on-site (LOD = 0.94 μM) using the RGB function of smartphones. Hence, the UiO-OH@Tb probe is proven to be an ideal material for MG detection, demonstrating significant practical value in real-world applications.\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13172855\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13172855","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Enhanced Sensitivity and Accuracy of Tb3+-Functionalized Zirconium-Based Bimetallic MOF for Visual Detection of Malachite Green in Fish
The ratiometric fluorescent probe UiO-OH@Tb, a zirconium-based MOF functionalized with Tb3+, was synthesized using a hydrothermal method. This probe employs the fluorescence resonance energy transfer (FRET) mechanism between Tb3+ and malachite green (MG) for the double-inverse signal ratiometric fluorescence detection of MG. The probe’s color shifts from lime green to blue with an increasing concentration of MG. In contrast, the monometallic MOFs’ (UiO-OH) probe shows only blue fluorescence quenching due to the inner filter effect (IFE) after interacting with MG. Additionally, the composite fluorescent probe (UiO-OH@Tb) exhibits superior sensitivity, with a detection limit (LOD) of 0.19 μM, which is significantly lower than that of the monometallic MOFs (25 μM). Moreover, the content of MG can be detected on-site (LOD = 0.94 μM) using the RGB function of smartphones. Hence, the UiO-OH@Tb probe is proven to be an ideal material for MG detection, demonstrating significant practical value in real-world applications.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds