死而复生:将报废超级电容器重新用于电化学海水淡化

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-08-27 DOI:10.1002/batt.202400506
Panyu Ren, Mohammad Torkamanzadeh, Stefanie Arnold, Emmanuel Pameté, Volker Presser
{"title":"死而复生:将报废超级电容器重新用于电化学海水淡化","authors":"Panyu Ren,&nbsp;Mohammad Torkamanzadeh,&nbsp;Stefanie Arnold,&nbsp;Emmanuel Pameté,&nbsp;Volker Presser","doi":"10.1002/batt.202400506","DOIUrl":null,"url":null,"abstract":"<p>This study explores the potential of re-purposing end-of-life commercial supercapacitors as electrochemical desalination cells, aligning with circular economy principles. A commercial 500-Farad supercapacitor was disassembled, and its carbon electrodes underwent various degrees of modification. The most straightforward modification involved NaOH-etching of the aluminum current collector to produce free-standing carbon films. More advanced modifications included CO<sub>2</sub> activation and binder-added wet processing of the electrodes. When evaluated as electrodes for electrochemical desalination via capacitive deionization of low-salinity (20 mM) NaCl solutions, the minimally modified NaOH-etched carbon electrodes achieved an average desalination capacity of 5.8 mg g<sup>−1</sup> and a charge efficiency of 80 %. In contrast, the CO<sub>2</sub>-activated, wet-processed electrodes demonstrated an improved desalination capacity of 7.9 mg g<sup>−1</sup> and a charge efficiency above 90 % with stable performance over 20 cycles. These findings highlight the feasibility and effectiveness of recycling supercapacitors for sustainable water desalination applications, offering a promising avenue for resource recovery and re-purposing in pursuing environmental sustainability.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400506","citationCount":"0","resultStr":"{\"title\":\"Life After Death: Re-Purposing End-of-Life Supercapacitors for Electrochemical Water Desalination\",\"authors\":\"Panyu Ren,&nbsp;Mohammad Torkamanzadeh,&nbsp;Stefanie Arnold,&nbsp;Emmanuel Pameté,&nbsp;Volker Presser\",\"doi\":\"10.1002/batt.202400506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study explores the potential of re-purposing end-of-life commercial supercapacitors as electrochemical desalination cells, aligning with circular economy principles. A commercial 500-Farad supercapacitor was disassembled, and its carbon electrodes underwent various degrees of modification. The most straightforward modification involved NaOH-etching of the aluminum current collector to produce free-standing carbon films. More advanced modifications included CO<sub>2</sub> activation and binder-added wet processing of the electrodes. When evaluated as electrodes for electrochemical desalination via capacitive deionization of low-salinity (20 mM) NaCl solutions, the minimally modified NaOH-etched carbon electrodes achieved an average desalination capacity of 5.8 mg g<sup>−1</sup> and a charge efficiency of 80 %. In contrast, the CO<sub>2</sub>-activated, wet-processed electrodes demonstrated an improved desalination capacity of 7.9 mg g<sup>−1</sup> and a charge efficiency above 90 % with stable performance over 20 cycles. These findings highlight the feasibility and effectiveness of recycling supercapacitors for sustainable water desalination applications, offering a promising avenue for resource recovery and re-purposing in pursuing environmental sustainability.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400506\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400506\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400506","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了将报废商用超级电容器重新用作电化学海水淡化电池的潜力,这符合循环经济原则。我们拆解了一个 500 法拉的商用超级电容器,并对其碳电极进行了不同程度的改装。最简单的改造是用 NaOH 酸蚀铝集流器,以产生独立的碳膜。更高级的改性包括二氧化碳活化和添加粘合剂的电极湿处理。通过对低盐度(20 毫摩尔)NaCl 溶液的电容去离子法进行电化学海水淡化电极评估,NaOH 蚀刻碳电极的平均海水淡化能力为 5.8 毫克/克,充电效率为 80%。相比之下,二氧化碳活化的湿处理电极的脱盐能力提高到 7.9 mg g-1,充电效率超过 90%,并且在 20 个周期内性能稳定。这些发现凸显了回收超级电容器用于可持续海水淡化应用的可行性和有效性,为资源回收和再利用以实现环境可持续性提供了一条大有可为的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Life After Death: Re-Purposing End-of-Life Supercapacitors for Electrochemical Water Desalination

This study explores the potential of re-purposing end-of-life commercial supercapacitors as electrochemical desalination cells, aligning with circular economy principles. A commercial 500-Farad supercapacitor was disassembled, and its carbon electrodes underwent various degrees of modification. The most straightforward modification involved NaOH-etching of the aluminum current collector to produce free-standing carbon films. More advanced modifications included CO2 activation and binder-added wet processing of the electrodes. When evaluated as electrodes for electrochemical desalination via capacitive deionization of low-salinity (20 mM) NaCl solutions, the minimally modified NaOH-etched carbon electrodes achieved an average desalination capacity of 5.8 mg g−1 and a charge efficiency of 80 %. In contrast, the CO2-activated, wet-processed electrodes demonstrated an improved desalination capacity of 7.9 mg g−1 and a charge efficiency above 90 % with stable performance over 20 cycles. These findings highlight the feasibility and effectiveness of recycling supercapacitors for sustainable water desalination applications, offering a promising avenue for resource recovery and re-purposing in pursuing environmental sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Picture: Green Electrolytes for Aqueous Ion Batteries: Towards High-Energy and Low-Temperature Applications (Batteries & Supercaps 2/2025) Cover Feature: Experimental and Computational Analysis of Slurry-Based Manufacturing of Solid-State Battery Composite Cathode (Batteries & Supercaps 2/2025) Cover Picture: Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-Based Semi-Solid Electrolytes (Batteries & Supercaps 1/2025) Cover Feature: The ARTISTIC Battery Manufacturing Digitalization Initiative: From Fundamental Research to Industrialization (Batteries & Supercaps 1/2025) Cover Feature: 3D Ternary Hybrid of VSe2/e-MXene/CNT with a Promising Energy Storage Performance for High Performance Asymmetric Supercapacitor (Batteries & Supercaps 1/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1