Will J. Dawson, Andrew R. T. Morrison, Francesco Iacoviello, Adam M. Boyce, Gargi Giri, Juntao Li, Thomas S. Miller, Paul Shearing
{"title":"泥浆裂解对厚锂离子电极性能的影响","authors":"Will J. Dawson, Andrew R. T. Morrison, Francesco Iacoviello, Adam M. Boyce, Gargi Giri, Juntao Li, Thomas S. Miller, Paul Shearing","doi":"10.1002/batt.202400260","DOIUrl":null,"url":null,"abstract":"<p>Electrode-level fracture, or mud cracking, occurs during the drying process of Li-ion electrodes and is known to be particularly prevalent in thick electrodes. Whilst these cracks are generally viewed as an obstruction to the production of thicker, more energy dense electrodes, cracks are similar in structure to directional pore channels which have been proposed as a means of improving ion transport to produce thicker electrodes more capable of performing at higher rates. However, existing literature has not thoroughly investigated the influence of cracking on the performance of electrodes. Here we analyse the 3D structure of thick cracked electrodes for the first time, using X-ray computed tomography. We show that mud cracking enhances the performance of Li-ion electrodes at discharge rates above 1 C and evaluate the implications on ion transport of different crack geometries by analysis of Euclidian distance maps.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400260","citationCount":"0","resultStr":"{\"title\":\"The Effect of Mud Cracking on the Performance of Thick Li-Ion Electrodes\",\"authors\":\"Will J. Dawson, Andrew R. T. Morrison, Francesco Iacoviello, Adam M. Boyce, Gargi Giri, Juntao Li, Thomas S. Miller, Paul Shearing\",\"doi\":\"10.1002/batt.202400260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrode-level fracture, or mud cracking, occurs during the drying process of Li-ion electrodes and is known to be particularly prevalent in thick electrodes. Whilst these cracks are generally viewed as an obstruction to the production of thicker, more energy dense electrodes, cracks are similar in structure to directional pore channels which have been proposed as a means of improving ion transport to produce thicker electrodes more capable of performing at higher rates. However, existing literature has not thoroughly investigated the influence of cracking on the performance of electrodes. Here we analyse the 3D structure of thick cracked electrodes for the first time, using X-ray computed tomography. We show that mud cracking enhances the performance of Li-ion electrodes at discharge rates above 1 C and evaluate the implications on ion transport of different crack geometries by analysis of Euclidian distance maps.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400260\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400260\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400260","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
锂离子电极在干燥过程中会产生泥裂,众所周知,这种现象在厚电极中尤为普遍。虽然这些裂纹通常被视为生产更厚、能量密度更高的电极的障碍,但裂纹在结构上与定向孔隙相似,而定向孔隙被认为是改善离子传输的一种手段。然而,现有文献并未全面分析裂纹对电极性能的影响。在这里,我们首次使用 X 射线计算机断层扫描技术分析了厚裂纹电极的三维结构,并将这种结构与电极的速率性能联系起来。我们的研究表明,泥浆裂纹是一种低成本的电极速率能力修正方法,与现有的制造方法兼容。
The Effect of Mud Cracking on the Performance of Thick Li-Ion Electrodes
Electrode-level fracture, or mud cracking, occurs during the drying process of Li-ion electrodes and is known to be particularly prevalent in thick electrodes. Whilst these cracks are generally viewed as an obstruction to the production of thicker, more energy dense electrodes, cracks are similar in structure to directional pore channels which have been proposed as a means of improving ion transport to produce thicker electrodes more capable of performing at higher rates. However, existing literature has not thoroughly investigated the influence of cracking on the performance of electrodes. Here we analyse the 3D structure of thick cracked electrodes for the first time, using X-ray computed tomography. We show that mud cracking enhances the performance of Li-ion electrodes at discharge rates above 1 C and evaluate the implications on ion transport of different crack geometries by analysis of Euclidian distance maps.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.