锂6.25Al0.25La3Zr1.75Nb0.25O12纳米纤维填料增强PVDF-HFP双层复合固态电解质

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-08-14 DOI:10.1002/batt.202400379
Minghua Chen, Wannian Liu, Yixin Wu, Yulong Liu, Yang Wang, Zhen Chen
{"title":"锂6.25Al0.25La3Zr1.75Nb0.25O12纳米纤维填料增强PVDF-HFP双层复合固态电解质","authors":"Minghua Chen,&nbsp;Wannian Liu,&nbsp;Yixin Wu,&nbsp;Yulong Liu,&nbsp;Yang Wang,&nbsp;Zhen Chen","doi":"10.1002/batt.202400379","DOIUrl":null,"url":null,"abstract":"<p>Composite solid-state electrolytes (CSEs) combining the advantages of polymer and ceramic electrolytes, are regarded as highly promising candidates for solid-state lithium metal batteries (SSLMBs). However, selecting appropriate polymer and ceramic materials, along with an effective combination method, is crucial in determining the performance of CSEs. To address the challenges of lithium dendrite inhibition and compatibility with cathodes simultaneously, herein, we have constructed a bilayer CSE based on poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP). Al/Nb co-doped Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>3</sub>Zr<sub>1.75</sub>Nb<sub>0.25</sub>O<sub>12</sub> (LALZNO) nanofibers prepared by an electrostatic spinning technique, are incorporated as fillers to create high-throughput Li<sup>+</sup> transport pathways and enhance the overall performance of the CSE. Furthermore, polypropylene carbonate is introduced on the anode side of the CSE to enhance the wettability of lithium metal/CSE interface, thus improving the stability of lithium upon cycling. On the cathode side, succinonitrile is added to inhibit the crystallization of PVDF-HFP and facilitate the fast Li<sup>+</sup> transport. Consequently, the Li||Li cells demonstrate stable plating-stripping performance at 0.1 mA cm<sup>−2</sup> for &gt;520 h. In addition, the Li||LiFePO<sub>4</sub> full cells show improved cycling and rate performance. This work validates the effectiveness of developing bilayer CSEs and showcases their potential application in SSLMBs.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li6.25Al0.25La3Zr1.75Nb0.25O12 Nanofiber Fillers Reinforced PVDF-HFP-Based Bilayer Composite Solid-State Electrolytes\",\"authors\":\"Minghua Chen,&nbsp;Wannian Liu,&nbsp;Yixin Wu,&nbsp;Yulong Liu,&nbsp;Yang Wang,&nbsp;Zhen Chen\",\"doi\":\"10.1002/batt.202400379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Composite solid-state electrolytes (CSEs) combining the advantages of polymer and ceramic electrolytes, are regarded as highly promising candidates for solid-state lithium metal batteries (SSLMBs). However, selecting appropriate polymer and ceramic materials, along with an effective combination method, is crucial in determining the performance of CSEs. To address the challenges of lithium dendrite inhibition and compatibility with cathodes simultaneously, herein, we have constructed a bilayer CSE based on poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP). Al/Nb co-doped Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>3</sub>Zr<sub>1.75</sub>Nb<sub>0.25</sub>O<sub>12</sub> (LALZNO) nanofibers prepared by an electrostatic spinning technique, are incorporated as fillers to create high-throughput Li<sup>+</sup> transport pathways and enhance the overall performance of the CSE. Furthermore, polypropylene carbonate is introduced on the anode side of the CSE to enhance the wettability of lithium metal/CSE interface, thus improving the stability of lithium upon cycling. On the cathode side, succinonitrile is added to inhibit the crystallization of PVDF-HFP and facilitate the fast Li<sup>+</sup> transport. Consequently, the Li||Li cells demonstrate stable plating-stripping performance at 0.1 mA cm<sup>−2</sup> for &gt;520 h. In addition, the Li||LiFePO<sub>4</sub> full cells show improved cycling and rate performance. This work validates the effectiveness of developing bilayer CSEs and showcases their potential application in SSLMBs.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400379\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400379","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

复合固态电解质(CSE)结合了聚合物电解质和陶瓷电解质的优点,被认为是非常有前途的固态锂金属电池(SSLMB)候选材料。然而,选择合适的聚合物和陶瓷材料以及有效的组合方法是决定 CSE 性能的关键。为了同时解决抑制锂枝晶和与阴极兼容的难题,我们在此构建了一种基于聚偏二氟乙烯-六氟丙烯(PVDF-HFP)的双层 CSE。通过静电纺丝技术制备的铝/铌共掺 Li6.25Al0.25La3Zr1.75Nb0.25O12 (LALZNO)纳米纤维作为填充物被加入到 CSE 中,以创建高通量的 Li+ 传输通道并提高 CSE 的整体性能。此外,还在 CSE 的阳极侧引入了聚丙烯碳酸盐,以增强金属锂/CSE 界面的润湿性,从而提高锂在循环过程中的稳定性。在阴极侧,加入了琥珀腈,以抑制 PVDF-HFP 的结晶,促进 Li+ 的快速传输。因此,锂电池在 0.1 mA cm-2 的条件下可持续 520 h,并显示出稳定的电镀性能。这项工作验证了开发双层 CSE 的有效性,并展示了其在 SSLMB 中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Li6.25Al0.25La3Zr1.75Nb0.25O12 Nanofiber Fillers Reinforced PVDF-HFP-Based Bilayer Composite Solid-State Electrolytes

Composite solid-state electrolytes (CSEs) combining the advantages of polymer and ceramic electrolytes, are regarded as highly promising candidates for solid-state lithium metal batteries (SSLMBs). However, selecting appropriate polymer and ceramic materials, along with an effective combination method, is crucial in determining the performance of CSEs. To address the challenges of lithium dendrite inhibition and compatibility with cathodes simultaneously, herein, we have constructed a bilayer CSE based on poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP). Al/Nb co-doped Li6.25Al0.25La3Zr1.75Nb0.25O12 (LALZNO) nanofibers prepared by an electrostatic spinning technique, are incorporated as fillers to create high-throughput Li+ transport pathways and enhance the overall performance of the CSE. Furthermore, polypropylene carbonate is introduced on the anode side of the CSE to enhance the wettability of lithium metal/CSE interface, thus improving the stability of lithium upon cycling. On the cathode side, succinonitrile is added to inhibit the crystallization of PVDF-HFP and facilitate the fast Li+ transport. Consequently, the Li||Li cells demonstrate stable plating-stripping performance at 0.1 mA cm−2 for >520 h. In addition, the Li||LiFePO4 full cells show improved cycling and rate performance. This work validates the effectiveness of developing bilayer CSEs and showcases their potential application in SSLMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Picture: Green Electrolytes for Aqueous Ion Batteries: Towards High-Energy and Low-Temperature Applications (Batteries & Supercaps 2/2025) Cover Feature: Experimental and Computational Analysis of Slurry-Based Manufacturing of Solid-State Battery Composite Cathode (Batteries & Supercaps 2/2025) Cover Picture: Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-Based Semi-Solid Electrolytes (Batteries & Supercaps 1/2025) Cover Feature: The ARTISTIC Battery Manufacturing Digitalization Initiative: From Fundamental Research to Industrialization (Batteries & Supercaps 1/2025) Cover Feature: 3D Ternary Hybrid of VSe2/e-MXene/CNT with a Promising Energy Storage Performance for High Performance Asymmetric Supercapacitor (Batteries & Supercaps 1/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1