将鲁棒奇异值分解应用于视频监控背景建模

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Statistics and Computing Pub Date : 2024-09-11 DOI:10.1007/s11222-024-10493-7
Subhrajyoty Roy, Abhik Ghosh, Ayanendranath Basu
{"title":"将鲁棒奇异值分解应用于视频监控背景建模","authors":"Subhrajyoty Roy, Abhik Ghosh, Ayanendranath Basu","doi":"10.1007/s11222-024-10493-7","DOIUrl":null,"url":null,"abstract":"<p>The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very sensitive to the presence of outliers. Hence, the resulting inferences across different applications using the classical SVD are extremely degraded in the presence of data contamination. In particular, background modelling of video surveillance data in the presence of camera tampering cannot be reliably solved by the classical SVD. In this paper, we propose a novel robust singular value decomposition technique based on the popular minimum density power divergence estimator. We have established the theoretical properties of the proposed estimator such as convergence, equivariance and consistency under the high-dimensional regime where both the row and column dimensions of the data matrix approach infinity. We also propose a fast and scalable algorithm based on alternating weighted regression to obtain the estimate. Within the scope of our fairly extensive simulation studies, our method performs better than existing robust SVD algorithms. Finally, we present an application of the proposed method on the video surveillance background modelling problem.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust singular value decomposition with application to video surveillance background modelling\",\"authors\":\"Subhrajyoty Roy, Abhik Ghosh, Ayanendranath Basu\",\"doi\":\"10.1007/s11222-024-10493-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very sensitive to the presence of outliers. Hence, the resulting inferences across different applications using the classical SVD are extremely degraded in the presence of data contamination. In particular, background modelling of video surveillance data in the presence of camera tampering cannot be reliably solved by the classical SVD. In this paper, we propose a novel robust singular value decomposition technique based on the popular minimum density power divergence estimator. We have established the theoretical properties of the proposed estimator such as convergence, equivariance and consistency under the high-dimensional regime where both the row and column dimensions of the data matrix approach infinity. We also propose a fast and scalable algorithm based on alternating weighted regression to obtain the estimate. Within the scope of our fairly extensive simulation studies, our method performs better than existing robust SVD algorithms. Finally, we present an application of the proposed method on the video surveillance background modelling problem.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10493-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10493-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

计算数据矩阵奇异值分解(SVD)的传统方法基于最小二乘法原理,因此对异常值非常敏感。因此,在数据污染的情况下,使用传统 SVD 计算出的不同应用推断结果会大打折扣。特别是在摄像头被篡改的情况下,经典 SVD 无法可靠地解决视频监控数据的背景建模问题。在本文中,我们提出了一种基于流行的最小密度功率发散估计器的新型鲁棒奇异值分解技术。我们建立了所提估计器的理论特性,如在数据矩阵的行维和列维都接近无穷大的高维条件下的收敛性、等差性和一致性。我们还提出了一种基于交替加权回归的快速、可扩展算法来获取估计值。在我们相当广泛的模拟研究范围内,我们的方法比现有的鲁棒 SVD 算法表现更好。最后,我们介绍了所提方法在视频监控背景建模问题上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust singular value decomposition with application to video surveillance background modelling

The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very sensitive to the presence of outliers. Hence, the resulting inferences across different applications using the classical SVD are extremely degraded in the presence of data contamination. In particular, background modelling of video surveillance data in the presence of camera tampering cannot be reliably solved by the classical SVD. In this paper, we propose a novel robust singular value decomposition technique based on the popular minimum density power divergence estimator. We have established the theoretical properties of the proposed estimator such as convergence, equivariance and consistency under the high-dimensional regime where both the row and column dimensions of the data matrix approach infinity. We also propose a fast and scalable algorithm based on alternating weighted regression to obtain the estimate. Within the scope of our fairly extensive simulation studies, our method performs better than existing robust SVD algorithms. Finally, we present an application of the proposed method on the video surveillance background modelling problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
期刊最新文献
Accelerated failure time models with error-prone response and nonlinear covariates Sequential model identification with reversible jump ensemble data assimilation method Hidden Markov models for multivariate panel data Shrinkage for extreme partial least-squares Nonconvex Dantzig selector and its parallel computing algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1