Lu Liu, Xinxing Xia, Guiling Xia, Deshui Lǚ, Shancong Huang, Kexin Liu
{"title":"研究 CMC/HNTs/MSN 涂层对热转印纸性能的影响","authors":"Lu Liu, Xinxing Xia, Guiling Xia, Deshui Lǚ, Shancong Huang, Kexin Liu","doi":"10.1007/s11998-024-00980-x","DOIUrl":null,"url":null,"abstract":"<p>With the continuous growth of the inkjet printing market, it has become particulary important to endow dye thermal transfer paper with fast-drying performance and fine transfer effect. In order to achieve this goal, the nanohybrid materials of HNTs/MSN (halloysite nanotubes/mesoporous silica) were prepared by Stöber method and in situ growth method, and then, the thermal sublimation transfer papers coated with CMC/MSN, CMC/HNTs, and CMC/HNTs/MSN were prepared, respectively. Characterizations of MSN, HNTs, and HNTs/MSN were conducted using TEM, FTIR, XRD, XPS, and BET techniques, followed by testing the properties of the coated papers. The results showed that the HNTs/MSN nanohybrid materials were formed by deposited MSN on HNTs with the Stöber method and in situ growth method. Among the three types of papers, CMC/HNTs/MSN paper exhibited the best comprehensive performance with fast-drying performance and fine transfer effect. Therefore, CMC/HNTs/MSN can be used as a novel type of thermal transfer paper coating with fast ink drying speed and fine transfer effect.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"12 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the effect of CMC/HNTs/MSN coatings on the performance of thermal transfer paper\",\"authors\":\"Lu Liu, Xinxing Xia, Guiling Xia, Deshui Lǚ, Shancong Huang, Kexin Liu\",\"doi\":\"10.1007/s11998-024-00980-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the continuous growth of the inkjet printing market, it has become particulary important to endow dye thermal transfer paper with fast-drying performance and fine transfer effect. In order to achieve this goal, the nanohybrid materials of HNTs/MSN (halloysite nanotubes/mesoporous silica) were prepared by Stöber method and in situ growth method, and then, the thermal sublimation transfer papers coated with CMC/MSN, CMC/HNTs, and CMC/HNTs/MSN were prepared, respectively. Characterizations of MSN, HNTs, and HNTs/MSN were conducted using TEM, FTIR, XRD, XPS, and BET techniques, followed by testing the properties of the coated papers. The results showed that the HNTs/MSN nanohybrid materials were formed by deposited MSN on HNTs with the Stöber method and in situ growth method. Among the three types of papers, CMC/HNTs/MSN paper exhibited the best comprehensive performance with fast-drying performance and fine transfer effect. Therefore, CMC/HNTs/MSN can be used as a novel type of thermal transfer paper coating with fast ink drying speed and fine transfer effect.</p>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11998-024-00980-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11998-024-00980-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Study on the effect of CMC/HNTs/MSN coatings on the performance of thermal transfer paper
With the continuous growth of the inkjet printing market, it has become particulary important to endow dye thermal transfer paper with fast-drying performance and fine transfer effect. In order to achieve this goal, the nanohybrid materials of HNTs/MSN (halloysite nanotubes/mesoporous silica) were prepared by Stöber method and in situ growth method, and then, the thermal sublimation transfer papers coated with CMC/MSN, CMC/HNTs, and CMC/HNTs/MSN were prepared, respectively. Characterizations of MSN, HNTs, and HNTs/MSN were conducted using TEM, FTIR, XRD, XPS, and BET techniques, followed by testing the properties of the coated papers. The results showed that the HNTs/MSN nanohybrid materials were formed by deposited MSN on HNTs with the Stöber method and in situ growth method. Among the three types of papers, CMC/HNTs/MSN paper exhibited the best comprehensive performance with fast-drying performance and fine transfer effect. Therefore, CMC/HNTs/MSN can be used as a novel type of thermal transfer paper coating with fast ink drying speed and fine transfer effect.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.