{"title":"沿岸沙丘向内陆沙丘梯度共存的两个物种的物种特异性功能特征反应","authors":"R. Bermúdez, J. Sánchez Vilas, R. Retuerto","doi":"10.1111/plb.13710","DOIUrl":null,"url":null,"abstract":"<jats:list list-type=\"bullet\"> <jats:list-item>Coastal dunes are characterised by strong gradients of abiotic stress, typically increasing in severity from inland areas towards the shoreline. Thus, dune gradients represent unique opportunities to study intraspecific responses to environmental changes and to investigate which factors drive community change. This study aims to examine functional trait variation in two coexisting species in response to environmental changes along a dune gradient in NW Spain. Trait convergence was also investigated and compared between both ends of the gradient.</jats:list-item> <jats:list-item>We measured functional leaf traits related to plant efficiency in the use of light, water and nutrients, also possible stressors (salt content and pH) and availability of limiting resources (water and nutrients) in the soil.</jats:list-item> <jats:list-item>Most soil variables showed changes following a non‐directional gradient. Differences in soil variables were site specific and depended on growth of the study species. Structural and functional traits depended on species and/or plant position on the gradient, except for effective quantum yield of PSII and leaf δ<jats:sup>15</jats:sup>N. The pattern of variation was mostly directional for reflectance indices related to leaf physiology. Multivariate analyses showed significant interspecific differences in the set of traits they exhibited along positions in the gradient. Species also differed in the combination of traits selected under given environmental conditions.</jats:list-item> <jats:list-item>Coexisting species display a specific set of traits that reflects different strategies to environmental stress. Our study highlights the overly simplistic nature of some previous studies that assume dune gradients are monotonically directional, without considering that these gradients may be differentially modified by species activity.</jats:list-item> </jats:list>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Species‐specific functional trait responses in two species coexisting along a shore‐to‐inland dune gradient\",\"authors\":\"R. Bermúdez, J. Sánchez Vilas, R. Retuerto\",\"doi\":\"10.1111/plb.13710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Coastal dunes are characterised by strong gradients of abiotic stress, typically increasing in severity from inland areas towards the shoreline. Thus, dune gradients represent unique opportunities to study intraspecific responses to environmental changes and to investigate which factors drive community change. This study aims to examine functional trait variation in two coexisting species in response to environmental changes along a dune gradient in NW Spain. Trait convergence was also investigated and compared between both ends of the gradient.</jats:list-item> <jats:list-item>We measured functional leaf traits related to plant efficiency in the use of light, water and nutrients, also possible stressors (salt content and pH) and availability of limiting resources (water and nutrients) in the soil.</jats:list-item> <jats:list-item>Most soil variables showed changes following a non‐directional gradient. Differences in soil variables were site specific and depended on growth of the study species. Structural and functional traits depended on species and/or plant position on the gradient, except for effective quantum yield of PSII and leaf δ<jats:sup>15</jats:sup>N. The pattern of variation was mostly directional for reflectance indices related to leaf physiology. Multivariate analyses showed significant interspecific differences in the set of traits they exhibited along positions in the gradient. Species also differed in the combination of traits selected under given environmental conditions.</jats:list-item> <jats:list-item>Coexisting species display a specific set of traits that reflects different strategies to environmental stress. Our study highlights the overly simplistic nature of some previous studies that assume dune gradients are monotonically directional, without considering that these gradients may be differentially modified by species activity.</jats:list-item> </jats:list>\",\"PeriodicalId\":220,\"journal\":{\"name\":\"Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/plb.13710\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.13710","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Species‐specific functional trait responses in two species coexisting along a shore‐to‐inland dune gradient
Coastal dunes are characterised by strong gradients of abiotic stress, typically increasing in severity from inland areas towards the shoreline. Thus, dune gradients represent unique opportunities to study intraspecific responses to environmental changes and to investigate which factors drive community change. This study aims to examine functional trait variation in two coexisting species in response to environmental changes along a dune gradient in NW Spain. Trait convergence was also investigated and compared between both ends of the gradient.We measured functional leaf traits related to plant efficiency in the use of light, water and nutrients, also possible stressors (salt content and pH) and availability of limiting resources (water and nutrients) in the soil.Most soil variables showed changes following a non‐directional gradient. Differences in soil variables were site specific and depended on growth of the study species. Structural and functional traits depended on species and/or plant position on the gradient, except for effective quantum yield of PSII and leaf δ15N. The pattern of variation was mostly directional for reflectance indices related to leaf physiology. Multivariate analyses showed significant interspecific differences in the set of traits they exhibited along positions in the gradient. Species also differed in the combination of traits selected under given environmental conditions.Coexisting species display a specific set of traits that reflects different strategies to environmental stress. Our study highlights the overly simplistic nature of some previous studies that assume dune gradients are monotonically directional, without considering that these gradients may be differentially modified by species activity.
期刊介绍:
Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology.
Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.