{"title":"利用克雷洛夫子空间公式改进偏最小二乘回归中的正则化和解释能力","authors":"Tommy Löfstedt","doi":"10.1007/s00180-024-01545-7","DOIUrl":null,"url":null,"abstract":"<p>Partial least squares regression (PLS-R) has been an important regression method in the life sciences and many other fields for decades. However, PLS-R is typically solved using an opaque algorithmic approach, rather than through an optimisation formulation and procedure. There is a clear optimisation formulation of the PLS-R problem based on a Krylov subspace formulation, but it is only rarely considered. The popularity of PLS-R is attributed to the ability to interpret the data through the model components, but the model components are not available when solving the PLS-R problem using the Krylov subspace formulation. We therefore highlight a simple reformulation of the PLS-R problem using the Krylov subspace formulation as a promising modelling framework for PLS-R, and illustrate one of the main benefits of this reformulation—that it allows arbitrary penalties of the regression coefficients in the PLS-R model. Further, we propose an approach to estimate the PLS-R model components for the solution found through the Krylov subspace formulation, that are those we would have obtained had we been able to use the common algorithms for estimating the PLS-R model. We illustrate the utility of the proposed method on simulated and real data.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using the Krylov subspace formulation to improve regularisation and interpretation in partial least squares regression\",\"authors\":\"Tommy Löfstedt\",\"doi\":\"10.1007/s00180-024-01545-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Partial least squares regression (PLS-R) has been an important regression method in the life sciences and many other fields for decades. However, PLS-R is typically solved using an opaque algorithmic approach, rather than through an optimisation formulation and procedure. There is a clear optimisation formulation of the PLS-R problem based on a Krylov subspace formulation, but it is only rarely considered. The popularity of PLS-R is attributed to the ability to interpret the data through the model components, but the model components are not available when solving the PLS-R problem using the Krylov subspace formulation. We therefore highlight a simple reformulation of the PLS-R problem using the Krylov subspace formulation as a promising modelling framework for PLS-R, and illustrate one of the main benefits of this reformulation—that it allows arbitrary penalties of the regression coefficients in the PLS-R model. Further, we propose an approach to estimate the PLS-R model components for the solution found through the Krylov subspace formulation, that are those we would have obtained had we been able to use the common algorithms for estimating the PLS-R model. We illustrate the utility of the proposed method on simulated and real data.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01545-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01545-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Using the Krylov subspace formulation to improve regularisation and interpretation in partial least squares regression
Partial least squares regression (PLS-R) has been an important regression method in the life sciences and many other fields for decades. However, PLS-R is typically solved using an opaque algorithmic approach, rather than through an optimisation formulation and procedure. There is a clear optimisation formulation of the PLS-R problem based on a Krylov subspace formulation, but it is only rarely considered. The popularity of PLS-R is attributed to the ability to interpret the data through the model components, but the model components are not available when solving the PLS-R problem using the Krylov subspace formulation. We therefore highlight a simple reformulation of the PLS-R problem using the Krylov subspace formulation as a promising modelling framework for PLS-R, and illustrate one of the main benefits of this reformulation—that it allows arbitrary penalties of the regression coefficients in the PLS-R model. Further, we propose an approach to estimate the PLS-R model components for the solution found through the Krylov subspace formulation, that are those we would have obtained had we been able to use the common algorithms for estimating the PLS-R model. We illustrate the utility of the proposed method on simulated and real data.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.