用于网络集成的 INet

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-09-04 DOI:10.1007/s00180-024-01536-8
Valeria Policastro, Matteo Magnani, Claudia Angelini, Annamaria Carissimo
{"title":"用于网络集成的 INet","authors":"Valeria Policastro, Matteo Magnani, Claudia Angelini, Annamaria Carissimo","doi":"10.1007/s00180-024-01536-8","DOIUrl":null,"url":null,"abstract":"<p>When collecting several data sets and heterogeneous data types on a given phenomenon of interest, the individual analysis of each data set will provide only a particular view of such phenomenon. Instead, integrating all the data may widen and deepen the results, offering a better view of the entire system. In the context of network integration, we propose the <span>INet</span> algorithm. <span>INet</span> assumes a similar network structure, representing latent variables in different network layers of the same system. Therefore, by combining individual edge weights and topological network structures, <span>INet</span> first constructs a <span>Consensus Network</span> that represents the shared information underneath the different layers to provide a global view of the entities that play a fundamental role in the phenomenon of interest. Then, it derives a <span>Case Specific Network</span> for each layer containing peculiar information of the single data type not present in all the others. We demonstrated good performance with our method through simulated data and detected new insights by analyzing biological and sociological datasets.\n</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INet for network integration\",\"authors\":\"Valeria Policastro, Matteo Magnani, Claudia Angelini, Annamaria Carissimo\",\"doi\":\"10.1007/s00180-024-01536-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When collecting several data sets and heterogeneous data types on a given phenomenon of interest, the individual analysis of each data set will provide only a particular view of such phenomenon. Instead, integrating all the data may widen and deepen the results, offering a better view of the entire system. In the context of network integration, we propose the <span>INet</span> algorithm. <span>INet</span> assumes a similar network structure, representing latent variables in different network layers of the same system. Therefore, by combining individual edge weights and topological network structures, <span>INet</span> first constructs a <span>Consensus Network</span> that represents the shared information underneath the different layers to provide a global view of the entities that play a fundamental role in the phenomenon of interest. Then, it derives a <span>Case Specific Network</span> for each layer containing peculiar information of the single data type not present in all the others. We demonstrated good performance with our method through simulated data and detected new insights by analyzing biological and sociological datasets.\\n</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01536-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01536-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在收集有关某一特定现象的多个数据集和不同类型的数据时,对每个数据集的单独分析只能提供对该现象的特定看法。相反,整合所有数据可以拓宽和深化分析结果,为整个系统提供更好的视角。在网络整合方面,我们提出了 INet 算法。INet 假设网络结构相似,代表同一系统不同网络层中的潜在变量。因此,通过结合单个边缘权重和拓扑网络结构,INet 首先构建了一个共识网络,该网络代表了不同网络层下的共享信息,为在相关现象中扮演重要角色的实体提供了一个全局视图。然后,它为每一层推导出一个案例特定网络,其中包含所有其他层中不存在的单一数据类型的特殊信息。我们通过模拟数据证明了我们的方法性能良好,并通过分析生物和社会学数据集发现了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
INet for network integration

When collecting several data sets and heterogeneous data types on a given phenomenon of interest, the individual analysis of each data set will provide only a particular view of such phenomenon. Instead, integrating all the data may widen and deepen the results, offering a better view of the entire system. In the context of network integration, we propose the INet algorithm. INet assumes a similar network structure, representing latent variables in different network layers of the same system. Therefore, by combining individual edge weights and topological network structures, INet first constructs a Consensus Network that represents the shared information underneath the different layers to provide a global view of the entities that play a fundamental role in the phenomenon of interest. Then, it derives a Case Specific Network for each layer containing peculiar information of the single data type not present in all the others. We demonstrated good performance with our method through simulated data and detected new insights by analyzing biological and sociological datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1