竞争性排斥推动了岛屿上白蚁群落的集结过程

IF 4 2区 环境科学与生态学 Q1 ECOLOGY Landscape Ecology Pub Date : 2024-08-17 DOI:10.1007/s10980-024-01922-z
Yuanyuan Luo, Donghao Wu, Changlu Weng, Wenjie Zhou, Mingjian Yu, Aiying Zhang
{"title":"竞争性排斥推动了岛屿上白蚁群落的集结过程","authors":"Yuanyuan Luo, Donghao Wu, Changlu Weng, Wenjie Zhou, Mingjian Yu, Aiying Zhang","doi":"10.1007/s10980-024-01922-z","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Context</h3><p>Abiotic filtering, including environmental and dispersal filtering, is frequently observed resulting in reduced diversity and more similar species assemblages following habitat fragmentation. Nonetheless, the significance of competitive exclusion is often underestimated.</p><h3 data-test=\"abstract-sub-heading\">Objectives</h3><p>We investigated the dominant assembly process among termite communities on land-bridge islands, focusing on species known for their high territoriality. We hypothesized that competitively superior species tend to dominate more favorable habitats, such as larger and less isolated islands. Consequently, we anticipated lower diversity and greater similarity in species assemblages than would be expected.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Termite communities were surveyed using standardized transects on 24 islands. We quantified the standardized effects of island area and isolation on taxonomic, phylogenetic and functional diversity by comparing observed patterns with randomly generated communities (i.e., stochastic process). A phylogenetic generalized linear mixed model (PGLMM) was conducted to examine species-specific responses to environmental factors and competition intensity (i.e., heterospecific abundance).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>We found that taxonomic, phylogenetic and functional diversity were lower than expected on larger and less isolated islands, suggesting that competitive exclusion was the dominant mechanism shaping termite communities in TIL. PGLMM showed that two fungus-growing species with larger body sizes increased with competition intensity, while other species exhibited negative responses. Notably, the abundance of fungus-growing species showed sharper increase with island area and decrease with isolation compared to other feeding groups. These findings demonstrate that competitively superior species prefer high-quality habitats and are more sensitive to habitat fragmentation.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our study highlights the significance of competitive exclusion in shaping termite communities and emphasizes the need to consider both competitive and niche difference among species or functional groups when predict changes in community structure and biodiversity loss resulting from habitat fragmentation.</p>","PeriodicalId":54745,"journal":{"name":"Landscape Ecology","volume":"8 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competitive exclusion drives termite community assembly process on islands\",\"authors\":\"Yuanyuan Luo, Donghao Wu, Changlu Weng, Wenjie Zhou, Mingjian Yu, Aiying Zhang\",\"doi\":\"10.1007/s10980-024-01922-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Context</h3><p>Abiotic filtering, including environmental and dispersal filtering, is frequently observed resulting in reduced diversity and more similar species assemblages following habitat fragmentation. Nonetheless, the significance of competitive exclusion is often underestimated.</p><h3 data-test=\\\"abstract-sub-heading\\\">Objectives</h3><p>We investigated the dominant assembly process among termite communities on land-bridge islands, focusing on species known for their high territoriality. We hypothesized that competitively superior species tend to dominate more favorable habitats, such as larger and less isolated islands. Consequently, we anticipated lower diversity and greater similarity in species assemblages than would be expected.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>Termite communities were surveyed using standardized transects on 24 islands. We quantified the standardized effects of island area and isolation on taxonomic, phylogenetic and functional diversity by comparing observed patterns with randomly generated communities (i.e., stochastic process). A phylogenetic generalized linear mixed model (PGLMM) was conducted to examine species-specific responses to environmental factors and competition intensity (i.e., heterospecific abundance).</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>We found that taxonomic, phylogenetic and functional diversity were lower than expected on larger and less isolated islands, suggesting that competitive exclusion was the dominant mechanism shaping termite communities in TIL. PGLMM showed that two fungus-growing species with larger body sizes increased with competition intensity, while other species exhibited negative responses. Notably, the abundance of fungus-growing species showed sharper increase with island area and decrease with isolation compared to other feeding groups. These findings demonstrate that competitively superior species prefer high-quality habitats and are more sensitive to habitat fragmentation.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>Our study highlights the significance of competitive exclusion in shaping termite communities and emphasizes the need to consider both competitive and niche difference among species or functional groups when predict changes in community structure and biodiversity loss resulting from habitat fragmentation.</p>\",\"PeriodicalId\":54745,\"journal\":{\"name\":\"Landscape Ecology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landscape Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10980-024-01922-z\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landscape Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10980-024-01922-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景生物过滤(包括环境过滤和扩散过滤)经常被观察到,导致栖息地破碎化后多样性降低,物种组合更加相似。我们研究了陆桥岛屿上白蚁群落的主要集结过程,重点是以高领地性著称的物种。我们假设,竞争优势物种往往会占据更有利的栖息地,如较大和较不孤立的岛屿。因此,我们预计物种群落的多样性和相似性会比预期的要低。通过将观察到的模式与随机生成的群落(即随机过程)进行比较,我们量化了岛屿面积和隔离度对分类、系统发育和功能多样性的标准化影响。结果我们发现,在面积较大和隔离程度较低的岛屿上,白蚁的分类、系统发育和功能多样性都比预期的低,这表明竞争排斥是形成 TIL 白蚁群落的主要机制。PGLMM显示,两个体型较大的真菌生长物种随着竞争强度的增加而增加,而其他物种则表现出消极反应。值得注意的是,与其他觅食类群相比,长菌类群的数量随岛屿面积的增加而急剧增加,随隔离程度的增加而急剧减少。结论:我们的研究强调了竞争排斥在白蚁群落形成过程中的重要作用,并强调在预测生境破碎化导致的群落结构变化和生物多样性损失时,需要同时考虑物种或功能组之间的竞争差异和生态位差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Competitive exclusion drives termite community assembly process on islands

Context

Abiotic filtering, including environmental and dispersal filtering, is frequently observed resulting in reduced diversity and more similar species assemblages following habitat fragmentation. Nonetheless, the significance of competitive exclusion is often underestimated.

Objectives

We investigated the dominant assembly process among termite communities on land-bridge islands, focusing on species known for their high territoriality. We hypothesized that competitively superior species tend to dominate more favorable habitats, such as larger and less isolated islands. Consequently, we anticipated lower diversity and greater similarity in species assemblages than would be expected.

Methods

Termite communities were surveyed using standardized transects on 24 islands. We quantified the standardized effects of island area and isolation on taxonomic, phylogenetic and functional diversity by comparing observed patterns with randomly generated communities (i.e., stochastic process). A phylogenetic generalized linear mixed model (PGLMM) was conducted to examine species-specific responses to environmental factors and competition intensity (i.e., heterospecific abundance).

Results

We found that taxonomic, phylogenetic and functional diversity were lower than expected on larger and less isolated islands, suggesting that competitive exclusion was the dominant mechanism shaping termite communities in TIL. PGLMM showed that two fungus-growing species with larger body sizes increased with competition intensity, while other species exhibited negative responses. Notably, the abundance of fungus-growing species showed sharper increase with island area and decrease with isolation compared to other feeding groups. These findings demonstrate that competitively superior species prefer high-quality habitats and are more sensitive to habitat fragmentation.

Conclusions

Our study highlights the significance of competitive exclusion in shaping termite communities and emphasizes the need to consider both competitive and niche difference among species or functional groups when predict changes in community structure and biodiversity loss resulting from habitat fragmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Landscape Ecology
Landscape Ecology 环境科学-地球科学综合
CiteScore
8.30
自引率
7.70%
发文量
164
审稿时长
8-16 weeks
期刊介绍: Landscape Ecology is the flagship journal of a well-established and rapidly developing interdisciplinary science that focuses explicitly on the ecological understanding of spatial heterogeneity. Landscape Ecology draws together expertise from both biophysical and socioeconomic sciences to explore basic and applied research questions concerning the ecology, conservation, management, design/planning, and sustainability of landscapes as coupled human-environment systems. Landscape ecology studies are characterized by spatially explicit methods in which spatial attributes and arrangements of landscape elements are directly analyzed and related to ecological processes.
期刊最新文献
Towards robust corridors: a validation framework to improve corridor modeling The importance of different forest management systems for people’s dietary quality in Tanzania Enhancing human well-being through cognitive and affective pathways linking landscape sensation to cultural ecosystem services Dynamic occupancy in a peripheral population of Myotis septentrionalis during disease outbreak Multiscale spatial analysis of two plant–insect interactions: effects of landscape, resource distribution, and other insects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1