基因缺失 NAPE-PLD 会诱导小鼠焦虑样行为、应激反应能力和 HPA 轴功能的环境依赖性失调

Taylor J Woodward, Diana Dimen, Emily Fender Sizemore, Sarah Stockman, Fezaan Kazi, Serge Luquet, Ken Mackie, Istvan Katona, Andrea G Hohmann
{"title":"基因缺失 NAPE-PLD 会诱导小鼠焦虑样行为、应激反应能力和 HPA 轴功能的环境依赖性失调","authors":"Taylor J Woodward, Diana Dimen, Emily Fender Sizemore, Sarah Stockman, Fezaan Kazi, Serge Luquet, Ken Mackie, Istvan Katona, Andrea G Hohmann","doi":"10.1101/2024.09.10.612324","DOIUrl":null,"url":null,"abstract":"The endocannabinoid (eCB) system regulates stress responsiveness and hypothalamic-pituitary-adrenal (HPA) axis activity. The enzyme N-acyl phosphatidylethanolamine phospholipase-D (NAPE-PLD) is primarily responsible for the synthesis of the endocannabinoid signaling molecule anandamide (AEA) and other structurally related lipid signaling molecules known as N-acylethanolamines (NAEs). However, little is known about how activity of this enzyme affects behavior. As AEA plays a regulatory role in stress adaptation, we hypothesized that reducing synthesis of AEA and other NAEs would dysregulate stress reactivity. To test this hypothesis, we evaluated wild type (WT) and NAPE-PLD knockout (KO) mice in behavioral assays that assess stress responsiveness and anxiety-like behavior. NAPE-PLD KO mice exhibited anxiety-like behaviors in the open field test and the light-dark box test after a period of single housing. NAPE-PLD KO mice exhibited a heightened freezing response to the testing environment that was further enhanced by exposure to 2,3,5-trimethyl-3-thiazoline (TMT) predator odor. NAPE-PLD KO mice exhibited an exaggerated freezing response at baseline but blunted response to TMT when compared to WT mice. NAPE-PLD KO mice also exhibited a context-dependent dysregulation of HPA axis in response to TMT in the paraventricular hypothalamic nucleus at a neuronal level, as measured by c-Fos immunohistochemstry. Male, but not female, NAPE-PLD knockout mice showed higher levels of circulating corticosterone relative to same-sex wildtype mice in response to TMT exposure, suggesting a sexually-dimorphic dysregulation of the HPA axis at the hormonal level. Together, these findings suggest the enzymatic activity of NAPE-PLD regulates emotional resilience and recovery from both acute and sustained stress.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic deletion of NAPE-PLD induces context-dependent dysregulation of anxiety-like behaviors, stress responsiveness, and HPA-axis functionality in mice\",\"authors\":\"Taylor J Woodward, Diana Dimen, Emily Fender Sizemore, Sarah Stockman, Fezaan Kazi, Serge Luquet, Ken Mackie, Istvan Katona, Andrea G Hohmann\",\"doi\":\"10.1101/2024.09.10.612324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The endocannabinoid (eCB) system regulates stress responsiveness and hypothalamic-pituitary-adrenal (HPA) axis activity. The enzyme N-acyl phosphatidylethanolamine phospholipase-D (NAPE-PLD) is primarily responsible for the synthesis of the endocannabinoid signaling molecule anandamide (AEA) and other structurally related lipid signaling molecules known as N-acylethanolamines (NAEs). However, little is known about how activity of this enzyme affects behavior. As AEA plays a regulatory role in stress adaptation, we hypothesized that reducing synthesis of AEA and other NAEs would dysregulate stress reactivity. To test this hypothesis, we evaluated wild type (WT) and NAPE-PLD knockout (KO) mice in behavioral assays that assess stress responsiveness and anxiety-like behavior. NAPE-PLD KO mice exhibited anxiety-like behaviors in the open field test and the light-dark box test after a period of single housing. NAPE-PLD KO mice exhibited a heightened freezing response to the testing environment that was further enhanced by exposure to 2,3,5-trimethyl-3-thiazoline (TMT) predator odor. NAPE-PLD KO mice exhibited an exaggerated freezing response at baseline but blunted response to TMT when compared to WT mice. NAPE-PLD KO mice also exhibited a context-dependent dysregulation of HPA axis in response to TMT in the paraventricular hypothalamic nucleus at a neuronal level, as measured by c-Fos immunohistochemstry. Male, but not female, NAPE-PLD knockout mice showed higher levels of circulating corticosterone relative to same-sex wildtype mice in response to TMT exposure, suggesting a sexually-dimorphic dysregulation of the HPA axis at the hormonal level. Together, these findings suggest the enzymatic activity of NAPE-PLD regulates emotional resilience and recovery from both acute and sustained stress.\",\"PeriodicalId\":501581,\"journal\":{\"name\":\"bioRxiv - Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.10.612324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内源性大麻素(eCB)系统调节应激反应能力和下丘脑-垂体-肾上腺(HPA)轴活动。N-acyl phosphatidylethanolamine phospholipase-D(NAPE-PLD)酶主要负责合成内源性大麻素信号分子anandamide(AEA)和其他结构相关的脂质信号分子,即N-acylethanolamines(NAEs)。然而,人们对这种酶的活性如何影响行为却知之甚少。由于 AEA 在应激适应中起调节作用,我们假设减少 AEA 和其他 NAEs 的合成会使应激反应失调。为了验证这一假设,我们对野生型(WT)小鼠和 NAPE-PLD 基因敲除(KO)小鼠进行了行为测定,以评估应激反应性和焦虑样行为。NAPE-PLD KO小鼠在经过一段时间的单一饲养后,在开阔地测试和光-暗箱测试中表现出焦虑样行为。NAPE-PLD KO小鼠对测试环境表现出更强的冻结反应,这种反应在暴露于2,3,5-三甲基-3-噻唑啉(TMT)捕食者气味时会进一步增强。与 WT 小鼠相比,NAPE-PLD KO 小鼠在基线时表现出夸张的冻结反应,但对 TMT 的反应却很迟钝。NAPE-PLD KO小鼠对TMT的反应在下丘脑室旁核的神经元水平上也表现出HPA轴的环境依赖性失调,这是由c-Fos免疫组化测定的。与同性野生型小鼠相比,雄性 NAPE-PLD 基因敲除小鼠在暴露于 TMT 的情况下显示出更高水平的循环皮质酮,而雌性 NAPE-PLD 基因敲除小鼠则没有,这表明 HPA 轴在激素水平上存在性别二态性失调。总之,这些研究结果表明,NAPE-PLD 的酶活性可调节情绪恢复能力以及从急性和持续应激中恢复的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic deletion of NAPE-PLD induces context-dependent dysregulation of anxiety-like behaviors, stress responsiveness, and HPA-axis functionality in mice
The endocannabinoid (eCB) system regulates stress responsiveness and hypothalamic-pituitary-adrenal (HPA) axis activity. The enzyme N-acyl phosphatidylethanolamine phospholipase-D (NAPE-PLD) is primarily responsible for the synthesis of the endocannabinoid signaling molecule anandamide (AEA) and other structurally related lipid signaling molecules known as N-acylethanolamines (NAEs). However, little is known about how activity of this enzyme affects behavior. As AEA plays a regulatory role in stress adaptation, we hypothesized that reducing synthesis of AEA and other NAEs would dysregulate stress reactivity. To test this hypothesis, we evaluated wild type (WT) and NAPE-PLD knockout (KO) mice in behavioral assays that assess stress responsiveness and anxiety-like behavior. NAPE-PLD KO mice exhibited anxiety-like behaviors in the open field test and the light-dark box test after a period of single housing. NAPE-PLD KO mice exhibited a heightened freezing response to the testing environment that was further enhanced by exposure to 2,3,5-trimethyl-3-thiazoline (TMT) predator odor. NAPE-PLD KO mice exhibited an exaggerated freezing response at baseline but blunted response to TMT when compared to WT mice. NAPE-PLD KO mice also exhibited a context-dependent dysregulation of HPA axis in response to TMT in the paraventricular hypothalamic nucleus at a neuronal level, as measured by c-Fos immunohistochemstry. Male, but not female, NAPE-PLD knockout mice showed higher levels of circulating corticosterone relative to same-sex wildtype mice in response to TMT exposure, suggesting a sexually-dimorphic dysregulation of the HPA axis at the hormonal level. Together, these findings suggest the enzymatic activity of NAPE-PLD regulates emotional resilience and recovery from both acute and sustained stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FUS controls muscle differentiation and structure through LLPS mediated recruitment of MEF2 and ETV5 Neural basis of collective social behavior during environmental challenge Contrasting Cognitive, Behavioral, and Physiological Responses to Breathwork vs. Naturalistic Stimuli in Reflective Chamber and VR Headset Environments Alpha-synuclein preformed fibril-induced aggregation and dopaminergic cell death in cathepsin D overexpression and ZKSCAN3 knockout mice Histamine interferes with the early visual processing in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1