了解快速制造的 AlSi10Mg 中的疲劳裂纹扩展途径

S Rangaraj, S S I Ahmed, A Davis, P J Withers, A Gholinia
{"title":"了解快速制造的 AlSi10Mg 中的疲劳裂纹扩展途径","authors":"S Rangaraj, S S I Ahmed, A Davis, P J Withers, A Gholinia","doi":"10.1088/1757-899x/1310/1/012025","DOIUrl":null,"url":null,"abstract":"Alloys produced through additive manufacturing (AM) offer substantial advantages, particularly in controlling material utilisation and precisely manipulating processing parameters, resulting in finely tuned material properties. However, the grain structure of AM material is typically complex, influenced by factors such as solidification dynamics, processing parameters, thermal gradients, and residual stress. Fatigue analysis shows considerable scatter due to entrained defects which limits their use as structural components. In this study, fatigue-failed samples from selective laser melted (SLM) AlSi10Mg alloy, oriented horizontal and vertical to the build direction were analysed to understand crack propagation paths. Here X-ray Computed Tomography (CT) was used to examine internal porosity from which fatigue cracks initiate, complemented by electron backscattered diffraction (EBSD) mapping. This enabled us to recognize the crucial role of the complex grain microstructure in controlling fatigue crack propagation.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding fatigue crack propagation pathways in Additively Manufactured AlSi10Mg\",\"authors\":\"S Rangaraj, S S I Ahmed, A Davis, P J Withers, A Gholinia\",\"doi\":\"10.1088/1757-899x/1310/1/012025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alloys produced through additive manufacturing (AM) offer substantial advantages, particularly in controlling material utilisation and precisely manipulating processing parameters, resulting in finely tuned material properties. However, the grain structure of AM material is typically complex, influenced by factors such as solidification dynamics, processing parameters, thermal gradients, and residual stress. Fatigue analysis shows considerable scatter due to entrained defects which limits their use as structural components. In this study, fatigue-failed samples from selective laser melted (SLM) AlSi10Mg alloy, oriented horizontal and vertical to the build direction were analysed to understand crack propagation paths. Here X-ray Computed Tomography (CT) was used to examine internal porosity from which fatigue cracks initiate, complemented by electron backscattered diffraction (EBSD) mapping. This enabled us to recognize the crucial role of the complex grain microstructure in controlling fatigue crack propagation.\",\"PeriodicalId\":14483,\"journal\":{\"name\":\"IOP Conference Series: Materials Science and Engineering\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1757-899x/1310/1/012025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1310/1/012025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过增材制造(AM)生产的合金具有很大的优势,特别是在控制材料利用率和精确控制加工参数方面,从而实现了材料性能的微调。然而,AM 材料的晶粒结构通常比较复杂,受到凝固动力学、加工参数、热梯度和残余应力等因素的影响。疲劳分析表明,由于夹杂缺陷,AM 材料的分布相当不均匀,这限制了其作为结构部件的应用。本研究分析了选择性激光熔化(SLM)AlSi10Mg 合金的疲劳失效样品,样品的水平方向和垂直于构建方向,以了解裂纹的传播路径。在这里,我们使用 X 射线计算机断层扫描 (CT) 来检查内部孔隙率,并辅以电子反向散射衍射 (EBSD) 测绘,发现疲劳裂纹正是从内部孔隙率开始的。这使我们认识到复杂的晶粒微结构在控制疲劳裂纹扩展方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding fatigue crack propagation pathways in Additively Manufactured AlSi10Mg
Alloys produced through additive manufacturing (AM) offer substantial advantages, particularly in controlling material utilisation and precisely manipulating processing parameters, resulting in finely tuned material properties. However, the grain structure of AM material is typically complex, influenced by factors such as solidification dynamics, processing parameters, thermal gradients, and residual stress. Fatigue analysis shows considerable scatter due to entrained defects which limits their use as structural components. In this study, fatigue-failed samples from selective laser melted (SLM) AlSi10Mg alloy, oriented horizontal and vertical to the build direction were analysed to understand crack propagation paths. Here X-ray Computed Tomography (CT) was used to examine internal porosity from which fatigue cracks initiate, complemented by electron backscattered diffraction (EBSD) mapping. This enabled us to recognize the crucial role of the complex grain microstructure in controlling fatigue crack propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid-structure interaction modeling of dry wire drawing by coupling OpenFOAM models of lubricant film and metal wire 1D and 2D porous media fixed bed reactor simulations with DUO: Steam Methane Reforming (SMR) validation test Evaluation of a carbon dioxide fish barrier with OpenFOAM Open source tools for OpenFOAM - Adaptive mesh refinement and convergence detection Vertical axis turbine simulations based on sliding and overset meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1