表面吸附氟的超导 FeSe 单层中的可控磁各向异性和铁弹性

Yueqiao Qu, Yu Liao, Zhixiang Wang, Liang Liu, Gang Yao
{"title":"表面吸附氟的超导 FeSe 单层中的可控磁各向异性和铁弹性","authors":"Yueqiao Qu, Yu Liao, Zhixiang Wang, Liang Liu, Gang Yao","doi":"arxiv-2409.07910","DOIUrl":null,"url":null,"abstract":"Controllable magnetization in atomically thin two-dimensional magnets is\nhighly desirable for developing spintronics. For FeSe monolayer, its magnetic\nground state is not yet fully understood, and the potential in constructing\nhigh-speed and advanced devices remains unknown. Using density functional\ntheory calculations, we confirm the spin ordering of monolayer FeSe to be dimer\ntexture. With Fluorine (F) adsorption (F/FeSe), the system exhibits a coverage\ndependent magnetic anisotropy and multiferroicity which can be attributable to\nthe Jahn-Teller effect, being the benefit to potential spintronic applications.\nIntriguingly, an inherent coupling between magnetism and ferroelasticity in the\nmost energetically favorable F/FeSe system is proposed. Our study thus not only\nprovides a promising way to control the spintronic properties and construct\nmultiferroics, but also renders F/FeSe an ideal platform for magnetism studies\nand practical high-performance multifunctional devices.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable magnetic anisotropy and ferroelasticity in superconducting FeSe monolayer with surface fluorine adsorption\",\"authors\":\"Yueqiao Qu, Yu Liao, Zhixiang Wang, Liang Liu, Gang Yao\",\"doi\":\"arxiv-2409.07910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controllable magnetization in atomically thin two-dimensional magnets is\\nhighly desirable for developing spintronics. For FeSe monolayer, its magnetic\\nground state is not yet fully understood, and the potential in constructing\\nhigh-speed and advanced devices remains unknown. Using density functional\\ntheory calculations, we confirm the spin ordering of monolayer FeSe to be dimer\\ntexture. With Fluorine (F) adsorption (F/FeSe), the system exhibits a coverage\\ndependent magnetic anisotropy and multiferroicity which can be attributable to\\nthe Jahn-Teller effect, being the benefit to potential spintronic applications.\\nIntriguingly, an inherent coupling between magnetism and ferroelasticity in the\\nmost energetically favorable F/FeSe system is proposed. Our study thus not only\\nprovides a promising way to control the spintronic properties and construct\\nmultiferroics, but also renders F/FeSe an ideal platform for magnetism studies\\nand practical high-performance multifunctional devices.\",\"PeriodicalId\":501234,\"journal\":{\"name\":\"arXiv - PHYS - Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原子薄二维磁体中的可控磁化对于开发自旋电子学来说是非常理想的。对于单层硒化铁来说,其磁场态尚未被完全了解,在构建高速和先进设备方面的潜力仍是未知数。利用密度泛函理论计算,我们证实单层 FeSe 的自旋有序为二椎体结构。随着氟(F)的吸附(F/FeSe),该体系表现出依赖于覆盖层的磁各向异性和多铁性,这可归因于贾恩-泰勒效应,有利于潜在的自旋电子应用。因此,我们的研究不仅为控制自旋电子特性和构建多铁氧体提供了一种有前途的方法,而且使 F/FeSe 成为磁性研究和实用高性能多功能器件的理想平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controllable magnetic anisotropy and ferroelasticity in superconducting FeSe monolayer with surface fluorine adsorption
Controllable magnetization in atomically thin two-dimensional magnets is highly desirable for developing spintronics. For FeSe monolayer, its magnetic ground state is not yet fully understood, and the potential in constructing high-speed and advanced devices remains unknown. Using density functional theory calculations, we confirm the spin ordering of monolayer FeSe to be dimer texture. With Fluorine (F) adsorption (F/FeSe), the system exhibits a coverage dependent magnetic anisotropy and multiferroicity which can be attributable to the Jahn-Teller effect, being the benefit to potential spintronic applications. Intriguingly, an inherent coupling between magnetism and ferroelasticity in the most energetically favorable F/FeSe system is proposed. Our study thus not only provides a promising way to control the spintronic properties and construct multiferroics, but also renders F/FeSe an ideal platform for magnetism studies and practical high-performance multifunctional devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1