通过相互作用粒子朗格文动力学实现统计有限元

Alex Glyn-Davies, Connor Duffin, Ieva Kazlauskaite, Mark Girolami, Ö. Deniz Akyildiz
{"title":"通过相互作用粒子朗格文动力学实现统计有限元","authors":"Alex Glyn-Davies, Connor Duffin, Ieva Kazlauskaite, Mark Girolami, Ö. Deniz Akyildiz","doi":"arxiv-2409.07101","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a class of interacting particle Langevin algorithms\nto solve inverse problems for partial differential equations (PDEs). In\nparticular, we leverage the statistical finite elements (statFEM) formulation\nto obtain a finite-dimensional latent variable statistical model where the\nparameter is that of the (discretised) forward map and the latent variable is\nthe statFEM solution of the PDE which is assumed to be partially observed. We\nthen adapt a recently proposed expectation-maximisation like scheme,\ninteracting particle Langevin algorithm (IPLA), for this problem and obtain a\njoint estimation procedure for the parameters and the latent variables. We\nconsider three main examples: (i) estimating the forcing for linear Poisson\nPDE, (ii) estimating the forcing for nonlinear Poisson PDE, and (iii)\nestimating diffusivity for linear Poisson PDE. We provide computational\ncomplexity estimates for forcing estimation in the linear case. We also provide\ncomprehensive numerical experiments and preconditioning strategies that\nsignificantly improve the performance, showing that the proposed class of\nmethods can be the choice for parameter inference in PDE models.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Finite Elements via Interacting Particle Langevin Dynamics\",\"authors\":\"Alex Glyn-Davies, Connor Duffin, Ieva Kazlauskaite, Mark Girolami, Ö. Deniz Akyildiz\",\"doi\":\"arxiv-2409.07101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a class of interacting particle Langevin algorithms\\nto solve inverse problems for partial differential equations (PDEs). In\\nparticular, we leverage the statistical finite elements (statFEM) formulation\\nto obtain a finite-dimensional latent variable statistical model where the\\nparameter is that of the (discretised) forward map and the latent variable is\\nthe statFEM solution of the PDE which is assumed to be partially observed. We\\nthen adapt a recently proposed expectation-maximisation like scheme,\\ninteracting particle Langevin algorithm (IPLA), for this problem and obtain a\\njoint estimation procedure for the parameters and the latent variables. We\\nconsider three main examples: (i) estimating the forcing for linear Poisson\\nPDE, (ii) estimating the forcing for nonlinear Poisson PDE, and (iii)\\nestimating diffusivity for linear Poisson PDE. We provide computational\\ncomplexity estimates for forcing estimation in the linear case. We also provide\\ncomprehensive numerical experiments and preconditioning strategies that\\nsignificantly improve the performance, showing that the proposed class of\\nmethods can be the choice for parameter inference in PDE models.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了一类交互粒子朗文算法来解决偏微分方程(PDE)的逆问题。特别是,我们利用统计有限元(statFEM)公式获得了一个有限维的潜变量统计模型,其中参数是(离散化)前向映射的参数,潜变量是假设为部分观测的偏微分方程的 statFEM 解。针对这一问题,我们采用了最近提出的类似期望最大化的方案--交互粒子朗文算法(IPLA),并获得了参数和潜变量的联合估计程序。我们考虑了三个主要例子:(i) 估计线性泊松 PDE 的强迫;(ii) 估计非线性泊松 PDE 的强迫;(iii) 估计线性泊松 PDE 的扩散性。我们为线性情况下的强迫估计提供了计算复杂性估计。我们还提供了可显著提高性能的综合数值实验和预处理策略,表明所提出的方法可以作为 PDE 模型参数推断的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical Finite Elements via Interacting Particle Langevin Dynamics
In this paper, we develop a class of interacting particle Langevin algorithms to solve inverse problems for partial differential equations (PDEs). In particular, we leverage the statistical finite elements (statFEM) formulation to obtain a finite-dimensional latent variable statistical model where the parameter is that of the (discretised) forward map and the latent variable is the statFEM solution of the PDE which is assumed to be partially observed. We then adapt a recently proposed expectation-maximisation like scheme, interacting particle Langevin algorithm (IPLA), for this problem and obtain a joint estimation procedure for the parameters and the latent variables. We consider three main examples: (i) estimating the forcing for linear Poisson PDE, (ii) estimating the forcing for nonlinear Poisson PDE, and (iii) estimating diffusivity for linear Poisson PDE. We provide computational complexity estimates for forcing estimation in the linear case. We also provide comprehensive numerical experiments and preconditioning strategies that significantly improve the performance, showing that the proposed class of methods can be the choice for parameter inference in PDE models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1