通过序列蒙特卡洛和统计物理学启发技术进行贝叶斯优化

Anton Lebedev, Thomas Warford, M. Emre Şahin
{"title":"通过序列蒙特卡洛和统计物理学启发技术进行贝叶斯优化","authors":"Anton Lebedev, Thomas Warford, M. Emre Şahin","doi":"arxiv-2409.03094","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach for an application of Bayesian\noptimization using Sequential Monte Carlo (SMC) and concepts from the\nstatistical physics of classical systems. Our method leverages the power of\nmodern machine learning libraries such as NumPyro and JAX, allowing us to\nperform Bayesian optimization on multiple platforms, including CPUs, GPUs,\nTPUs, and in parallel. Our approach enables a low entry level for exploration\nof the methods while maintaining high performance. We present a promising\ndirection for developing more efficient and effective techniques for a wide\nrange of optimization problems in diverse fields.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Optimization through Sequential Monte Carlo and Statistical Physics-Inspired Techniques\",\"authors\":\"Anton Lebedev, Thomas Warford, M. Emre Şahin\",\"doi\":\"arxiv-2409.03094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approach for an application of Bayesian\\noptimization using Sequential Monte Carlo (SMC) and concepts from the\\nstatistical physics of classical systems. Our method leverages the power of\\nmodern machine learning libraries such as NumPyro and JAX, allowing us to\\nperform Bayesian optimization on multiple platforms, including CPUs, GPUs,\\nTPUs, and in parallel. Our approach enables a low entry level for exploration\\nof the methods while maintaining high performance. We present a promising\\ndirection for developing more efficient and effective techniques for a wide\\nrange of optimization problems in diverse fields.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种使用序列蒙特卡罗(SMC)和经典系统统计物理学概念的贝叶斯优化应用方法。我们的方法利用了 NumPyro 和 JAX 等现代机器学习库的强大功能,使我们能够在多个平台(包括 CPU、GPU、TPU)上并行执行贝叶斯优化。我们的方法在保持高性能的同时,还降低了方法探索的入门门槛。我们提出了一个很有前途的方向,可以为不同领域中更广泛的优化问题开发更高效、更有效的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian Optimization through Sequential Monte Carlo and Statistical Physics-Inspired Techniques
In this paper, we propose an approach for an application of Bayesian optimization using Sequential Monte Carlo (SMC) and concepts from the statistical physics of classical systems. Our method leverages the power of modern machine learning libraries such as NumPyro and JAX, allowing us to perform Bayesian optimization on multiple platforms, including CPUs, GPUs, TPUs, and in parallel. Our approach enables a low entry level for exploration of the methods while maintaining high performance. We present a promising direction for developing more efficient and effective techniques for a wide range of optimization problems in diverse fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1