空间传染病动态的条件逻辑个体水平模型

Tahmina Akter, Rob Deardon
{"title":"空间传染病动态的条件逻辑个体水平模型","authors":"Tahmina Akter, Rob Deardon","doi":"arxiv-2409.02353","DOIUrl":null,"url":null,"abstract":"Here, we introduce a novel framework for modelling the spatiotemporal\ndynamics of disease spread known as conditional logistic individual-level\nmodels (CL-ILM's). This framework alleviates much of the computational burden\nassociated with traditional spatiotemporal individual-level models for\nepidemics, and facilitates the use of standard software for fitting logistic\nmodels when analysing spatiotemporal disease patterns. The models can be fitted\nin either a frequentist or Bayesian framework. Here, we apply the new spatial\nCL-ILM to both simulated and semi-real data from the UK 2001 foot-and-mouth\ndisease epidemic.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional logistic individual-level models of spatial infectious disease dynamics\",\"authors\":\"Tahmina Akter, Rob Deardon\",\"doi\":\"arxiv-2409.02353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we introduce a novel framework for modelling the spatiotemporal\\ndynamics of disease spread known as conditional logistic individual-level\\nmodels (CL-ILM's). This framework alleviates much of the computational burden\\nassociated with traditional spatiotemporal individual-level models for\\nepidemics, and facilitates the use of standard software for fitting logistic\\nmodels when analysing spatiotemporal disease patterns. The models can be fitted\\nin either a frequentist or Bayesian framework. Here, we apply the new spatial\\nCL-ILM to both simulated and semi-real data from the UK 2001 foot-and-mouth\\ndisease epidemic.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们介绍了一种新的疾病传播时空动态建模框架,即条件逻辑个体水平模型(CL-ILM)。该框架减轻了传统流行病时空个体水平模型的大部分计算负担,便于在分析疾病时空模式时使用标准软件拟合逻辑模型。这些模型可以在频数主义或贝叶斯框架内拟合。在此,我们将新的空间CL-ILM 应用于英国 2001 年口蹄疫疫情的模拟和半真实数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conditional logistic individual-level models of spatial infectious disease dynamics
Here, we introduce a novel framework for modelling the spatiotemporal dynamics of disease spread known as conditional logistic individual-level models (CL-ILM's). This framework alleviates much of the computational burden associated with traditional spatiotemporal individual-level models for epidemics, and facilitates the use of standard software for fitting logistic models when analysing spatiotemporal disease patterns. The models can be fitted in either a frequentist or Bayesian framework. Here, we apply the new spatial CL-ILM to both simulated and semi-real data from the UK 2001 foot-and-mouth disease epidemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1