自适应立体 MCMC

Cameron Bell, Krzystof Łatuszyński, Gareth O. Roberts
{"title":"自适应立体 MCMC","authors":"Cameron Bell, Krzystof Łatuszyński, Gareth O. Roberts","doi":"arxiv-2408.11780","DOIUrl":null,"url":null,"abstract":"In order to tackle the problem of sampling from heavy tailed, high\ndimensional distributions via Markov Chain Monte Carlo (MCMC) methods, Yang,\nLatuszy\\'nski, and Roberts (2022) (arXiv:2205.12112) introduces the\nstereographic projection as a tool to compactify $\\mathbb{R}^d$ and transform\nthe problem into sampling from a density on the unit sphere $\\mathbb{S}^d$.\nHowever, the improvement in algorithmic efficiency, as well as the\ncomputational cost of the implementation, are still significantly impacted by\nthe parameters used in this transformation. To address this, we introduce adaptive versions of the Stereographic Random\nWalk (SRW), the Stereographic Slice Sampler (SSS), and the Stereographic Bouncy\nParticle Sampler (SBPS), which automatically update the parameters of the\nalgorithms as the run progresses. The adaptive setup allows us to better\nexploit the power of the stereographic projection, even when the target\ndistribution is neither centered nor homogeneous. We present a simulation study\nshowing each algorithm's robustness to starting far from the mean in heavy\ntailed, high dimensional settings, as opposed to Hamiltonian Monte Carlo (HMC).\nWe establish a novel framework for proving convergence of adaptive MCMC\nalgorithms over collections of simultaneously uniformly ergodic Markov\noperators, including continuous time processes. This framework allows us to\nprove LLNs and a CLT for our adaptive Stereographic algorithms.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Stereographic MCMC\",\"authors\":\"Cameron Bell, Krzystof Łatuszyński, Gareth O. Roberts\",\"doi\":\"arxiv-2408.11780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to tackle the problem of sampling from heavy tailed, high\\ndimensional distributions via Markov Chain Monte Carlo (MCMC) methods, Yang,\\nLatuszy\\\\'nski, and Roberts (2022) (arXiv:2205.12112) introduces the\\nstereographic projection as a tool to compactify $\\\\mathbb{R}^d$ and transform\\nthe problem into sampling from a density on the unit sphere $\\\\mathbb{S}^d$.\\nHowever, the improvement in algorithmic efficiency, as well as the\\ncomputational cost of the implementation, are still significantly impacted by\\nthe parameters used in this transformation. To address this, we introduce adaptive versions of the Stereographic Random\\nWalk (SRW), the Stereographic Slice Sampler (SSS), and the Stereographic Bouncy\\nParticle Sampler (SBPS), which automatically update the parameters of the\\nalgorithms as the run progresses. The adaptive setup allows us to better\\nexploit the power of the stereographic projection, even when the target\\ndistribution is neither centered nor homogeneous. We present a simulation study\\nshowing each algorithm's robustness to starting far from the mean in heavy\\ntailed, high dimensional settings, as opposed to Hamiltonian Monte Carlo (HMC).\\nWe establish a novel framework for proving convergence of adaptive MCMC\\nalgorithms over collections of simultaneously uniformly ergodic Markov\\noperators, including continuous time processes. This framework allows us to\\nprove LLNs and a CLT for our adaptive Stereographic algorithms.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了通过马尔可夫链蒙特卡罗(MCMC)方法解决从重尾高维分布中采样的问题,Yang, Latuszy\'nski, and Roberts (2022) (arXiv:2205. 12112) 引入了立体投影作为工具,将 $\mathbb{R}^d$ 压缩,并将问题转化为从单位球体上的密度 $\mathbb{S}^d$ 中采样。12112)引入了立体投影作为工具,以压缩 $\mathbb{R}^d$ 并将问题转化为从单位球体 $\mathbb{S}^d$ 上的密度中采样。然而,算法效率的提高以及实现的计算成本仍然受到这种转化中使用的参数的显著影响。为了解决这个问题,我们引入了自适应版本的立体随机漫步(SRW)、立体切片采样器(SSS)和立体弹跳粒子采样器(SBPS),它们会在运行过程中自动更新算法参数。自适应设置使我们能够更好地发挥立体投影的威力,即使目标分布既不居中也不均匀。我们提出了一项仿真研究,展示了每种算法在重尾、高维设置下远离均值起始时的鲁棒性,这与汉密尔顿蒙特卡罗(HMC)不同。我们建立了一个新颖的框架,用于证明自适应 MCMC 算法在同时均匀遍历马尔可夫操作者集合(包括连续时间过程)上的收敛性。这个框架使我们能够为我们的自适应立体算法证明 LLN 和 CLT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Stereographic MCMC
In order to tackle the problem of sampling from heavy tailed, high dimensional distributions via Markov Chain Monte Carlo (MCMC) methods, Yang, Latuszy\'nski, and Roberts (2022) (arXiv:2205.12112) introduces the stereographic projection as a tool to compactify $\mathbb{R}^d$ and transform the problem into sampling from a density on the unit sphere $\mathbb{S}^d$. However, the improvement in algorithmic efficiency, as well as the computational cost of the implementation, are still significantly impacted by the parameters used in this transformation. To address this, we introduce adaptive versions of the Stereographic Random Walk (SRW), the Stereographic Slice Sampler (SSS), and the Stereographic Bouncy Particle Sampler (SBPS), which automatically update the parameters of the algorithms as the run progresses. The adaptive setup allows us to better exploit the power of the stereographic projection, even when the target distribution is neither centered nor homogeneous. We present a simulation study showing each algorithm's robustness to starting far from the mean in heavy tailed, high dimensional settings, as opposed to Hamiltonian Monte Carlo (HMC). We establish a novel framework for proving convergence of adaptive MCMC algorithms over collections of simultaneously uniformly ergodic Markov operators, including continuous time processes. This framework allows us to prove LLNs and a CLT for our adaptive Stereographic algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1