蒙特卡洛方法基于方差的高效可靠性敏感性分析

Thomas Most
{"title":"蒙特卡洛方法基于方差的高效可靠性敏感性分析","authors":"Thomas Most","doi":"arxiv-2408.06664","DOIUrl":null,"url":null,"abstract":"In this paper, a Monte Carlo based approach for the quantification of the\nimportance of the scattering input parameters with respect to the failure\nprobability is presented. Using the basic idea of the alpha-factors of the\nFirst Order Reliability Method, this approach was developed to analyze\ncorrelated input variables as well as arbitrary marginal parameter\ndistributions. Based on an efficient transformation scheme using the importance\nsampling principle, only a single analysis run by a plain or variance-reduced\nMonte Carlo method is required to give a sufficient estimate of the introduced\nparameter sensitivities. Several application examples are presented and\ndiscussed in the paper.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient variance-based reliability sensitivity analysis for Monte Carlo methods\",\"authors\":\"Thomas Most\",\"doi\":\"arxiv-2408.06664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Monte Carlo based approach for the quantification of the\\nimportance of the scattering input parameters with respect to the failure\\nprobability is presented. Using the basic idea of the alpha-factors of the\\nFirst Order Reliability Method, this approach was developed to analyze\\ncorrelated input variables as well as arbitrary marginal parameter\\ndistributions. Based on an efficient transformation scheme using the importance\\nsampling principle, only a single analysis run by a plain or variance-reduced\\nMonte Carlo method is required to give a sufficient estimate of the introduced\\nparameter sensitivities. Several application examples are presented and\\ndiscussed in the paper.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于蒙特卡罗的方法,用于量化散射输入参数对故障概率的重要性。利用一阶可靠性方法中α系数的基本思想,该方法可用于分析相关输入变量以及任意边际参数分布。该方法基于使用输入采样原理的高效转换方案,只需使用普通或方差缩小的蒙特卡罗方法进行一次分析,即可对引入的参数敏感性做出充分估计。文中介绍并讨论了几个应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient variance-based reliability sensitivity analysis for Monte Carlo methods
In this paper, a Monte Carlo based approach for the quantification of the importance of the scattering input parameters with respect to the failure probability is presented. Using the basic idea of the alpha-factors of the First Order Reliability Method, this approach was developed to analyze correlated input variables as well as arbitrary marginal parameter distributions. Based on an efficient transformation scheme using the importance sampling principle, only a single analysis run by a plain or variance-reduced Monte Carlo method is required to give a sufficient estimate of the introduced parameter sensitivities. Several application examples are presented and discussed in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1