{"title":"用于乳腺癌检测的 DM-PA-CNTFET 生物传感器:分析模型","authors":"Bhargavi Sharma, Shivani Yadav, Sonam Rewari, Yasha Hasija","doi":"10.1149/2162-8777/ad6a88","DOIUrl":null,"url":null,"abstract":"In this paper, an analytical model for a novel design dielectric modulated plasma-assisted carbon nanotube field-effect transistor (DM-PA-CNTFET) biosensor is proposed for breast cancer detection. This work is based on a PA-CNTFET in which CNT is used as a channel of FET, and various other device engineering techniques such as dual metal gate-all-around structure and dielectric stack of SiO<sub>2</sub> and HfO<sub>2</sub> have been used. A comparative analysis of DS-GAAE-CNTFET was performed using a silicon gate all-around FET (Silicon-GAA-FET)-based biosensor. Early detection of breast cancer is made possible by immobilizing MDA-MB-231 and HS578t into the dual-sided nanocavity, which alters the electrical properties of the proposed CNTFET-based biosensor. The DS-GAAE-CNTFET sensor demonstrates a drain ON current sensitivity of 236.9 nA and a threshold voltage sensitivity of 285.58 mV for HS578t cancer cells. Malignant MDA-MB-231 breast cells exhibit a higher drain ON current sensitivity of 343.35 nA and a corresponding threshold voltage sensitivity of 293.23 mV. The exceptional sensitivity and structural resilience of the DS-GAAE-CNTFET biosensor establish it as a promising candidate for early breast cancer detection.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DM-PA-CNTFET Biosensor for Breast Cancer Detection: Analytical Model\",\"authors\":\"Bhargavi Sharma, Shivani Yadav, Sonam Rewari, Yasha Hasija\",\"doi\":\"10.1149/2162-8777/ad6a88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an analytical model for a novel design dielectric modulated plasma-assisted carbon nanotube field-effect transistor (DM-PA-CNTFET) biosensor is proposed for breast cancer detection. This work is based on a PA-CNTFET in which CNT is used as a channel of FET, and various other device engineering techniques such as dual metal gate-all-around structure and dielectric stack of SiO<sub>2</sub> and HfO<sub>2</sub> have been used. A comparative analysis of DS-GAAE-CNTFET was performed using a silicon gate all-around FET (Silicon-GAA-FET)-based biosensor. Early detection of breast cancer is made possible by immobilizing MDA-MB-231 and HS578t into the dual-sided nanocavity, which alters the electrical properties of the proposed CNTFET-based biosensor. The DS-GAAE-CNTFET sensor demonstrates a drain ON current sensitivity of 236.9 nA and a threshold voltage sensitivity of 285.58 mV for HS578t cancer cells. Malignant MDA-MB-231 breast cells exhibit a higher drain ON current sensitivity of 343.35 nA and a corresponding threshold voltage sensitivity of 293.23 mV. The exceptional sensitivity and structural resilience of the DS-GAAE-CNTFET biosensor establish it as a promising candidate for early breast cancer detection.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad6a88\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad6a88","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
DM-PA-CNTFET Biosensor for Breast Cancer Detection: Analytical Model
In this paper, an analytical model for a novel design dielectric modulated plasma-assisted carbon nanotube field-effect transistor (DM-PA-CNTFET) biosensor is proposed for breast cancer detection. This work is based on a PA-CNTFET in which CNT is used as a channel of FET, and various other device engineering techniques such as dual metal gate-all-around structure and dielectric stack of SiO2 and HfO2 have been used. A comparative analysis of DS-GAAE-CNTFET was performed using a silicon gate all-around FET (Silicon-GAA-FET)-based biosensor. Early detection of breast cancer is made possible by immobilizing MDA-MB-231 and HS578t into the dual-sided nanocavity, which alters the electrical properties of the proposed CNTFET-based biosensor. The DS-GAAE-CNTFET sensor demonstrates a drain ON current sensitivity of 236.9 nA and a threshold voltage sensitivity of 285.58 mV for HS578t cancer cells. Malignant MDA-MB-231 breast cells exhibit a higher drain ON current sensitivity of 343.35 nA and a corresponding threshold voltage sensitivity of 293.23 mV. The exceptional sensitivity and structural resilience of the DS-GAAE-CNTFET biosensor establish it as a promising candidate for early breast cancer detection.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.