{"title":"氧化物弥散强化钴铬镍基多主元素合金的优异强度-电导率协同作用","authors":"Yiqing Zhang, Kaiju Lu, Fengchun Jiang, Yongxiong Chen, Xiubing Liang","doi":"10.1080/21663831.2024.2393166","DOIUrl":null,"url":null,"abstract":"CoCrNi-based multi-principal element alloys (MPEAs) often lack strength at elevated temperatures. Here, to overcome this deficiency, a novel oxide-dispersion strengthening (ODS) CoCrNi-based MPEA w...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"68 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior strength-ductility synergy of an oxide-dispersion strengthened CoCrNi-based multi-principal element alloy\",\"authors\":\"Yiqing Zhang, Kaiju Lu, Fengchun Jiang, Yongxiong Chen, Xiubing Liang\",\"doi\":\"10.1080/21663831.2024.2393166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CoCrNi-based multi-principal element alloys (MPEAs) often lack strength at elevated temperatures. Here, to overcome this deficiency, a novel oxide-dispersion strengthening (ODS) CoCrNi-based MPEA w...\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2024.2393166\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2024.2393166","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Superior strength-ductility synergy of an oxide-dispersion strengthened CoCrNi-based multi-principal element alloy
CoCrNi-based multi-principal element alloys (MPEAs) often lack strength at elevated temperatures. Here, to overcome this deficiency, a novel oxide-dispersion strengthening (ODS) CoCrNi-based MPEA w...
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.